Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập đề thi vào lớp 10 môn Toán sở GDĐT thành phố Hà Nội (1988 - 2023)

Tài liệu gồm 89 trang, được tổng hợp bởi thầy giáo Bùi Quốc Hoàn, tuyển tập đề thi chính thức tuyển sinh vào lớp 10 (hệ phổ thông và hệ chuyên) môn Toán sở Giáo dục và Đào tạo thành phố Hà Nội (giai đoạn từ năm 1988 đến năm 2023). Mở đầu : Kính chào các thầy giáo, cô giáo và các bạn học sinh. Trên tay các thầy giáo, cô giáo và các bạn học sinh đang là tuyển tập các đề thi vào 10 hệ phổ thông và hệ chuyên của thành phố Hà Nội từ năm học 1988 – 1989 đến năm học 2022 – 2023 được soạn thảo theo chuẩn LATEX. Tài liệu được soạn thảo với sự hỗ trợ của nhóm Toán và LATEX. Đặc biệt với cấu trúc gói đề thi ex_test của tác giả Trần Anh Tuấn, Đại học Thương Mại. Quá trình biên tập dựa trên đề thi các thầy giáo, cô giáo chia sẻ trên mạng không tránh được sơ xuất do tài liệu gốc không rõ. Rất mong thầy giáo, cô giáo thông cảm. Để tài liệu hoàn thiện và đầy đủ hơn thầy giáo, cô giáo có đề trong tài liệu còn thiếu hoặc sai sót mong thầy giáo, cô giáo gửi về Emai: [email protected]. Trân trọng cảm ơn. Hà Nội, ngày 19 tháng 06 năm 2022 Tác giả. Bùi Quốc Hoàn. Mục lục : 1 ĐỀ THI VÀO HỆ PHỔ THÔNG 4. 1 Sở Giáo dục và Đào tạo Hà Nội năm học 1988 – 1989 5. 2 Sở Giáo dục và Đào tạo Hà Nội năm học 1989 – 1990 6. 3 Sở Giáo dục và Đào tạo Hà Nội năm học 1990 – 1991 7. 4 Sở Giáo dục và Đào tạo Hà Nội năm học 1991 – 1992 8. 5 Sở Giáo dục và Đào tạo Hà Nội năm học 1992 – 1993 9. 6 Sở Giáo dục và Đào tạo Hà Nội năm học 1993 – 1994 10. 7 Sở Giáo dục và Đào tạo Hà Nội năm học 1994 – 1995 11. 8 Sở Giáo dục và Đào tạo Hà Nội năm học 1995 – 1996 12. 9 Sở Giáo dục và Đào tạo Hà Nội năm học 1995 – 1996 13. 10 Sở Giáo dục và Đào tạo Hà Nội năm học 1996 – 1997 14. 11 Sở Giáo dục và Đào tạo Hà Nội năm học 1996 – 1997 15. 12 Sở Giáo dục và Đào tạo Hà Nội năm học 1997 – 1998 16. 13 Sở Giáo dục và Đào tạo Hà Nội năm học 1997 – 1998 17. 14 Sở Giáo dục và Đào tạo Hà Nội năm học 1998 – 1999 18. 15 Sở Giáo dục và Đào tạo Hà Nội năm học 1999 – 2000 19. 16 Sở Giáo dục và Đào tạo Hà Nội năm học 2000 – 2001 20. 17 Sở Giáo dục và Đào tạo Hà Nội năm học 2002 – 2003 21. 18 Sở Giáo dục và Đào tạo Hà Nội năm học 2003 – 2004 22. 19 Sở Giáo dục và Đào tạo Hà Nội năm học 2004 – 2005 23. 20 Sở Giáo dục và Đào tạo Hà Nội năm học 2005 – 2006 24. 21 Sở Giáo dục và Đào tạo Hà Nội năm học 2006 – 2007 25. 22 Sở Giáo dục và Đào tạo Hà Nội năm học 2007 – 2008 26. 23 Sở Giáo dục và Đào tạo Hà Nội năm học 2008 – 2009 27. 24 Sở Giáo dục và Đào tạo Hà Nội năm học 2009 – 2010 28. 25 Sở Giáo dục và Đào tạo Hà Nội năm học 2010 – 2011 29. 26 Sở Giáo dục và Đào tạo Hà Nội năm học 2011 – 2012 30. 27 Sở Giáo dục và Đào tạo Hà Nội năm học 2012 – 2013 31. 28 Sở Giáo dục và Đào tạo Hà Nội năm học 2013 – 2014 32. 29 Sở Giáo dục và Đào tạo Hà Nội năm học 2014 – 2015 33. 30 Sở Giáo dục và Đào tạo Hà Nội năm học 2015 – 2016 34. 31 Sở Giáo dục và Đào tạo Hà Nội năm học 2016 – 2017 35. 32 Sở Giáo dục và Đào tạo Hà Nội năm học 2017 – 2018 36. 33 Sở Giáo dục và Đào tạo Hà Nội năm học 2018 – 2019 37. 34 Sở Giáo dục và Đào tạo Hà Nội năm học 2019 – 2020 38. 35 Sở Giáo dục và Đào tạo Hà Nội năm học 2020 – 2021 39. 36 Sở Giáo dục và Đào tạo Hà Nội năm học 2021 – 2022 40. 37 Sở Giáo dục và Đào tạo Hà Nội năm học 2022 – 2023 41. 2 ĐỀ THI VÀO HỆ CHUYÊN 42. 1 Sở Giáo dục và Đào tạo Hà Nội năm học 1997 – 1998 43. 2 Sở Giáo dục và Đào tạo Hà Nội năm học 1997 – 1998 44. 3 Sở Giáo dục và Đào tạo Hà Nội năm học 1998 – 1999 45. 4 Sở Giáo dục và Đào tạo Hà Nội năm học 1998 – 1999 46. 5 Sở Giáo dục và Đào tạo Hà Nội năm học 1999 – 2000 47. 6 Sở Giáo dục và Đào tạo Hà Nội năm học 1999 – 2000 48. 7 Sở Giáo dục và Đào tạo Hà Nội năm học 2000 – 2001 49. 8 Sở Giáo dục và Đào tạo Hà Nội năm học 2000 – 2001 50. 9 Sở Giáo dục và Đào tạo Hà Nội năm học 2001 – 2002 51. 10 Sở Giáo dục và Đào tạo Hà Nội năm học 2001 – 2002 52. 11 Sở Giáo dục và Đào tạo Hà Nội năm học 2002 – 2003 53. 12 Sở Giáo dục và Đào tạo Hà Nội năm học 2002 – 2003 54. 13 Sở Giáo dục và Đào tạo Hà Nội năm học 2003 – 2004 55. 14 Sở Giáo dục và Đào tạo Hà Nội năm học 2003 – 2004 56. 15 Sở Giáo dục và Đào tạo Hà Nội năm học 2004 – 2005 57. 16 Sở Giáo dục và Đào tạo Hà Nội năm học 2004 – 2005 58. 17 Sở Giáo dục và Đào tạo Hà Nội năm học 2005 – 2006 59. 18 Sở Giáo dục và Đào tạo Hà Nội năm học 2005 – 2006 60. 19 Sở Giáo dục và Đào tạo Hà Nội năm học 2006 – 2007 61. 20 Sở Giáo dục và Đào tạo Hà Nội năm học 2007 – 2008 62. 21 Sở Giáo dục và Đào tạo Hà Nội năm học 2008 – 2009 63. 22 Sở Giáo dục và Đào tạo Hà Nội năm học 2009 – 2010 64. 23 Sở Giáo dục và Đào tạo Hà Nội năm học 2010 – 2011 65. 24 Sở Giáo dục và Đào tạo Hà Nội năm học 2011 – 2012 66. 25 Sở Giáo dục và Đào tạo Hà Nội năm học 2012 – 2013 67. 26 Sở Giáo dục và Đào tạo Hà Nội năm học 2013 – 2014 68. 27 Sở Giáo dục và Đào tạo Hà Nội năm học 2014 – 2015 69. 28 Sở Giáo dục và Đào tạo Hà Nội năm học 2015 – 2016 70. 29 Sở Giáo dục và Đào tạo Hà Nội năm học 2015 – 2016 71. 30 Sở Giáo dục và Đào tạo Hà Nội năm học 2016 – 2017 72. 31 Sở Giáo dục và Đào tạo Hà Nội năm học 2016 – 2017 73. 32 Sở Giáo dục và Đào tạo Hà Nội năm học 2017 – 2018 74. 33 Sở Giáo dục và Đào tạo Hà Nội năm học 2017 – 2018 75. 34 Sở Giáo dục và Đào tạo Hà Nội năm học 2018 – 2019 76. 35 Sở Giáo dục và Đào tạo Hà Nội năm học 2018 – 2019 77. 36 Sở Giáo dục và Đào tạo Hà Nội năm học 2019 – 2020 78. 37 Sở Giáo dục và Đào tạo Hà Nội năm học 2019 – 2020 79. 38 Sở Giáo dục và Đào tạo Hà Nội năm học 2020 – 2021 80. 39 Sở Giáo dục và Đào tạo Hà Nội năm học 2020 – 2021 81. 40 Sở Giáo dục và Đào tạo Hà Nội năm học 2020 – 2021 82. 41 Sở Giáo dục và Đào tạo Hà Nội năm học 2021 – 2022 83. 42 Sở Giáo dục và Đào tạo Hà Nội năm học 2021 – 2022 84. 43 Sở Giáo dục và Đào tạo Hà Nội năm học 2022 – 2023 85. 44 Sở Giáo dục và Đào tạo Hà Nội năm học 2022 – 2023 86.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 sở GD ĐT Cần Thơ
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 sở GD ĐT Cần Thơ Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2021-2022 sở GD ĐT Cần Thơ Đề tuyển sinh môn Toán (chuyên) năm 2021-2022 sở GD ĐT Cần Thơ Xin chào quý thầy, cô và các em học sinh! Sytu hân hạnh giới thiệu đến bạn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021-2022 của sở GD&ĐT Cần Thơ. Bộ đề thi này bao gồm câu hỏi có đáp án và lời giải chi tiết, giúp các em ôn tập hiệu quả cho kỳ thi sắp tới vào ngày 05 tháng 06 năm 2021. Một trong những câu hỏi trong đề tuyển sinh là: "Cho parabol (P): y = x2 và đường thẳng (d): y = -2mx - 2m. Hãy tìm tất cả giá trị của tham số m sao cho đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x1 và x2 thỏa mãn điều kiện |x1 - x2| = 3". Để giải được bài toán này, các em cần áp dụng kiến thức về hệ phương trình, đồ thị hàm số và tính chất của parabol. Hãy cố gắng suy nghĩ logic và sáng tạo để tìm ra đáp án chính xác nhé! Chúc các em ôn tập thật tốt và đạt kết quả cao trong kỳ thi sắp tới. Hy vọng đề tuyển sinh môn Toán (chuyên) năm 2021-2022 sẽ là công cụ hữu ích cho quá trình ôn tập của các em. Cám ơn bạn đã đọc tin!
Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 sở GD ĐT Bình Phước
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 sở GD ĐT Bình Phước Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 sở GD ĐT Bình Phước Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 sở GD ĐT Bình Phước Sytu xin gửi đến thầy cô và các em học sinh đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 – 2022 sở GD&DĐT Bình Phước. Đề thi bao gồm đáp án, lời giải chi tiết và bảng hướng dẫn chấm điểm, sẽ diễn ra vào ngày 09 tháng 06 năm 2021. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 – 2022 sở GD&DĐT Bình Phước: + Cho phương trình: \(2x^2 - mx + m^3 - 8m + 5 = 0\) với m là tham số. a) Tìm m để phương trình có 2 nghiệm trái dấu. b) Tìm m để phương trình có 2 nghiệm phân biệt thỏa mãn điều kiện: \(2x^2 + x - 1 = 0\). + Cho tam giác nhọn ABC, AB AC nội tiếp đường tròn O, D là điểm chính giữa trên cung nhỏ BC của đường tròn O, H là chân đường cao từ A của tam giác ABC. Hai điểm K L lần lượt là hình chiếu vuông góc của H lên AB và AC. a) Chứng minh AL CB AB KL. b) Lấy điểm E trên đoạn thẳng AD sao cho BD DE. Chứng minh E là tâm đường tròn nội tiếp tam giác ABC. c) Đường thẳng KL cắt đường tròn O tại hai điểm M N (K nằm giữa M L). Chứng minh AM AN AH. + Cho hai số tự nhiên a b thỏa mãn \(a^2 + b^2 = 32\). Chứng minh rằng \(a^2b^2\) là số chính phương. Mọi chi tiết xin vui lòng xem trong file Word đính kèm.
Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021 2022 sở GD ĐT Lào Cai
Nội dung Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021 2022 sở GD ĐT Lào Cai Bản PDF - Nội dung bài viết Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021-2022 sở GD ĐT Lào Cai Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021-2022 sở GD ĐT Lào Cai Xin chào quý thầy cô và các em học sinh! Sytu xin giới thiệu đến quý vị bộ đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm học 2021-2022 do sở GD&ĐT Lào Cai tổ chức. Đề thi bao gồm đáp án và lời giải chi tiết, sẽ diễn ra vào ngày 03 tháng 06 năm 2021. Dưới đây là một số câu hỏi trích từ đề thi: Một người dự định đi xe đạp từ A đến B cách nhau 40km trong một thời gian nhất định. Sau khi đi được 20km, người đó đã nghỉ 20 phút. Để đến B đúng giờ, người đó phải tăng tốc độ thêm bao nhiêu km/h? Cho tam giác nhọn ABC không cân (AB < AC) có đường tròn ngoại tiếp (O; R) và đường tròn nội tiếp (I; r). Chứng minh rằng… Cho p là số nguyên tố sao cho tồn tại các số nguyên dương x, y thỏa mãn 3^x * 3^y = p^xy = 6^8. Tìm giá trị lớn nhất của p. Quý thầy cô và các em học sinh có thể tải file WORD để xem đầy đủ nội dung đề thi và các câu hỏi khác. Chúc quý vị ôn tập tốt và thành công trong kỳ thi sắp tới!
Đề tuyển sinh môn Toán (chuyên Toán) năm 2021 2022 sở GD ĐT Tiền Giang
Nội dung Đề tuyển sinh môn Toán (chuyên Toán) năm 2021 2022 sở GD ĐT Tiền Giang Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên Toán) năm 2021 2022 sở GD ĐT Tiền Giang Đề tuyển sinh môn Toán (chuyên Toán) năm 2021 2022 sở GD ĐT Tiền Giang Xin chào quý thầy, cô giáo và các em học sinh. Dưới đây là đề tuyển sinh lớp 10 môn Toán (chuyên Toán) năm 2021 – 2022 của sở GD&ĐT Tiền Giang. Đề thi bao gồm đáp án, lời giải chi tiết, hướng dẫn chấm và biểu điểm. Kỳ thi sẽ diễn ra vào ngày 05 tháng 06 năm 2021. Trích dẫn câu hỏi từ đề tuyển sinh lớp 10 môn Toán (chuyên Toán) năm 2021 – 2022 sở GD&ĐT Tiền Giang: + Cho tam giác ABC vuông tại A (AC < AB) có đường cao AH. Gọi D là điểm nằm trên đoạn thẳng AH (D khác A và H). Đường thẳng BD cắt đường tròn tâm C bán kính CA tại E và F (F nằm giữa B và D). Qua F vẽ đường thẳng song song với AE cắt hai đường thẳng AB và AH lần lượt tại M và N. a) Chứng minh BH.BC = BE.BF. b) Chứng minh HD là tia phân giác của góc EHF. c) Chứng minh F là trung điểm MN. + Trong mặt phẳng tọa độ Oxy, cho parabol 2 Pyx và đường thẳng dy x 2. Gọi A, B là hai giao điểm của đường thẳng (d) với parabol (P). Tìm tọa độ điểm M nằm trên trục hoành sao cho chu vi tam giác MAB nhỏ nhất. + Cho m, n là các số nguyên dương sao cho 2 2 mnm chia hết cho mn. Chứng minh rằng m là số chính phương. File WORD (dành cho quý thầy, cô): [link]. Hãy chuẩn bị kỹ càng và chúc các em thí sinh thi tốt!