Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 10 năm 2023 - 2024 trường THPT Triệu Sơn 2 - Thanh Hóa

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi khảo sát chất lượng theo định hướng thi tốt nghiệp THPT môn Toán 10 năm học 2023 – 2024 trường THPT Triệu Sơn 2, tỉnh Thanh Hóa. Đề thi được biên soạn theo định dạng trắc nghiệm mới nhất, với nội dung gồm 03 phần: Câu trắc nghiệm nhiều phương án lựa chọn; Câu trắc nghiệm đúng / sai; Câu trắc nghiệm trả lời ngắn. Kỳ thi được diễn ra vào ngày 29 tháng 01 năm 2024. Đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán 10 năm 2023 – 2024 trường THPT Triệu Sơn 2 – Thanh Hóa : + Một gia đình cần ít nhất 600 đơn vị protein và 200 đơn vị lipit trong thức ăn mỗi ngày. Mỗi kilogam thịt bò chứa 800 đơn vị protein và 200 đơn vị lipit, mỗi kilogam thịt lợn chứa 600 đơn vị protein và 400 đơn vị lipit. Biết rằng gia đình này chỉ mua nhiều nhất 1 kg thịt bò và 0,8 kg thịt lợn. Giá tiền 1 kg thịt bò là 250 nghìn đồng; 1 kg thịt lợn là 160 nghìn đồng. Chi phí tối thiểu mà gia đình này cần trong một ngày là bao nhiêu (làm tròn đến đơn vị nghìn đồng)? + Tứ Sơn là 4 vùng kinh kế động lực của tỉnh Thanh Hóa gồm Nghi Sơn, Sầm Sơn, Lam Sơn – Sao Vàng và Bỉm Sơn. Để thúc đẩy tăng trưởng kinh tế người ta dự tính mở tuyến đường cao tốc với 4 làn xe nối Lam Sơn – Sao Vàng với Sầm Sơn. Kinh phí xây dựng 1km cao tốc với 4 làn xe hết khoảng 186 tỉ đồng. Dựa vào các khoảng cách đã cho trên hình vẽ (Nghi Sơn (N), Sầm Sơn (S), Lam Sơn – Sao Vàng (L) và Bỉm Sơn (B)), hãy tính số tiền cần xây dựng cao tốc (làm tròn đến tỉ đồng). + Bạn Châu cân lần lượt 50 quả vải được lựa chọn ngẫu nhiên từ vườn nhà mình và được kết quả cho như bảng sau: Cân nặng (đơn vi: gam) Số quả 8 8 19 10 20 19 21 17 22 3. Mốt của mẫu số liệu trên là?

Nguồn: toanmath.com

Đọc Sách

Đề kiểm định chất lượng Toán 10 lần 2 năm 2019 - 2020 trường THPT Yên Phong 2 - Bắc Ninh
Ngày … tháng 06 năm 2020, trường THPT Yên Phong số 2, tỉnh Bắc Ninh tổ chức kỳ thi kiểm định chất lượng môn Toán lớp 10 năm 2019 – 2020 lần thứ hai. Đề kiểm định chất lượng Toán 10 lần 2 năm 2019 – 2020 trường THPT Yên Phong 2 – Bắc Ninh gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài thi là 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề kiểm định chất lượng Toán 10 lần 2 năm 2019 – 2020 trường THPT Yên Phong 2 – Bắc Ninh : + Trong mặt phẳng tọa độ Oxy, cho ∆ABC có A(3;0), B(-2;1), C(4;1). a) Viết phương trình tổng quát của đường cao AH của ∆ABC. b) Viết phương trình đường tròn tâm B và tiếp xúc với AC. c) Tìm tọa độ điểm M thuộc cạnh BC sao cho S∆ABC  = 3/2S∆MAB. [ads] + Chứng minh rằng ∆ABC cân nếu asin(B – C) + bsin(C – A) = 0. + Chứng minh rằng (2tanx – sin2x)/[(sinx + cosx)^2 – 1] = (tanx)^2.
Đề khảo sát Toán 10 lần 2 năm 2019 - 2020 trường THPT Lý Thường Kiệt - Bắc Ninh
Ngày … tháng 05 năm 2020, trường THPT Lý Thường Kiệt, tỉnh Bắc Ninh tổ chức kỳ thi kiểm tra khảo sát chất lượng môn Toán lớp 10 lần thứ hai năm học 2019 – 2020. Đề khảo sát Toán 10 lần 2 năm học 2019 – 2020 trường THPT Lý Thường Kiệt – Bắc Ninh mã đề 132 gồm 04 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án. Ma trận đề khảo sát Toán 10 lần 2 năm 2019 – 2020 trường THPT Lý Thường Kiệt – Bắc Ninh:Chủ đềNhận biếtThông hiểuVận dụngVận dụng caoTổng1. Mệnh đề và tập hợp210032. Hàm số bậc nhất và bậc hai4322113. Phương trình bậc nhất và bậc hai5241124. Hệ phương trình – hệ phương trình – bất phương trình5421125. Hệ thức lượng trong tam giác221166. Phương trình đường thẳng32106Tổng423150
Đề thi KSCL Toán 10 lần 3 năm 2019 - 2020 trường THPT Nguyễn Viết Xuân - Vĩnh Phúc
Ngày … tháng 05 năm 2020, trường THPT Nguyễn Viết Xuân, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 10 năm học 2019 – 2020 lần thi thứ ba, kỳ thi được diễn ra trong giai đoạn giữa học kỳ 2 (HK2). Đề thi KSCL Toán 10 lần 3 năm 2019 – 2020 trường Nguyễn Viết Xuân – Vĩnh Phúc mã đề 066 gồm có 08 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án. Trích dẫn đề thi KSCL Toán 10 lần 3 năm 2019 – 2020 trường Nguyễn Viết Xuân – Vĩnh Phúc : + Cho hai điểm B và C phân biệt. Tập hợp những điểm M thỏa mãn CM.CB = CM^2 thuộc: A. Một đường khác không phải đường tròn. B. Đường tròn (B;BC). C. Đường tròn (C;BC). D. Đường tròn đường kính BC. + Cho hai bất phương trình x^2 – m(m^2 + 1)x + m^4 < 0 (1) và x^2 + 4x + 3 > 0 (2). Các giá trị của tham số m sao cho nghiệm của bất phương trình (1) đều là nghiệm của bất phương trình (2) là? + Cho hệ phương trình: 2x – y = 2 – a và x + 2y = a + 1. Các giá trị thích hợp của tham số a để tổng bình phương hai nghiệm của hệ phương trình đạt giá trị nhỏ nhất? + Cho tam giác ABC, gọi M là trung điểm của BC và G là trọng tâm của tam giác ABC. Câu nào sau đây đúng? + Gọi H là trực tâm tam giác ABC, phương trình các đường thẳng chứa các cạnh và đường cao tam giác là: AB: 7x – y + 4 = 0; BH: 2x + y – 4 = 0; AH: x – y -2 = 0. Phương trình đường thẳng chứa đường cao CH của tam giác ABC là?
Đề kiểm tra chuyên đề Toán 10 lần 2 năm 2019 - 2020 trường Quang Hà - Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh đề kiểm tra chuyên đề Toán 10 lần 2 năm học 2019 – 2020 trường THPT Quang Hà – Vĩnh Phúc; đề thi được biên soạn theo dạng tự luận với 09 câu hỏi và bài toán, bao quát nội dung Toán 10 từ đầu năm học đến thời điểm diễn ra kỳ thi, thời gian làm bài thi là 120 phút (không tính thời gian giáo viên phát đề), đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề kiểm tra chuyên đề Toán 10 lần 2 năm 2019 – 2020 trường Quang Hà – Vĩnh Phúc : + Trong mặt phẳng tọa độ Oxy, cho 3 điểm A(1;2); B(-2;6); C(4;4). a/ Chứng minh 3 điểm A, B, C không thẳng hàng. b/ Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành. + Cho tam giác ABC. Gọi D, E lần lượt là các điểm thỏa mãn: BD = 2/3.BC, AE = 1/4.AC. Điểm K trên đoạn thẳng AD sao cho B, K, E thẳng hàng. Tìm tỉ số AD/AK. + Xác định Parabol y = ax^2 + bx + c biết rằng Parabol đó đi qua điểm A(0;2) và đỉnh I(1;1). + Cho phương trình x^2 + 3x + m = 0. Tìm m để phương trình có hai nghiệm phân biệt x1; x2 thỏa mãn: x1^2 + x2^2 = 17. + Xác định a, b để đồ thị hàm số y = ax + b đi qua hai điểm A(0;-3) và B(2;5).