Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 đợt 1 năm 2023 2024 trường THPT Sông Công Thái Nguyên

Nội dung Đề thi thử Toán vào 10 đợt 1 năm 2023 2024 trường THPT Sông Công Thái Nguyên Bản PDF - Nội dung bài viết Đề thi thử Toán vào 10 đợt 1 năm 2023 – 2024 trường THPT Sông Công Thái Nguyên Đề thi thử Toán vào 10 đợt 1 năm 2023 – 2024 trường THPT Sông Công Thái Nguyên Sytu xin được trình bày đến quý thầy cô và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT đợt 1 năm học 2023 – 2024 trường THPT Sông Công, tỉnh Thái Nguyên. Đề thi bao gồm 01 trang với 10 bài toán hình thức tự luận, thời gian làm bài 120 phút, không tính thời gian giao đề. Đề thi cung cấp đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn một số câu hỏi từ đề thi: Cho hình thang vuông ABCD có đường cao AD cm 2 AB cm 2 và CD cm 4. Hãy tính diện tích hình thang và bán kính đường tròn ngoại tiếp tam giác ABC. Cho ba điểm A, M, B phân biệt, thẳng hàng và M nằm giữa A B. Trên cùng một nửa mặt phẳng bờ là đường thẳng AB, dựng hai tam giác đều AMC và BMD. Gọi P là giao điểm của AD và BC. Chứng minh: a) Tứ giác AMPC nội tiếp. b) CP CB DP DA AB. Cho ABCD là một tứ giác nội tiếp có AC BC AD cm 5. Hai đường chéo AC BD cắt nhau tại E sao cho BE cm 12 và DE cm 3. Đường trung trực của đoạn thẳng CD cắt đoạn thẳng BE tại I. a) Chứng minh IC AD. b) Tính BCD. Đề thi thử Toán vào lớp 10 đợt 1 năm 2023 – 2024 trường THPT Sông Công Thái Nguyên không chỉ giúp các em học sinh rèn luyện kỹ năng làm bài thi mà còn giúp củng cố kiến thức Toán từ cơ bản đến nâng cao. Chúc các em thi tốt!

Nguồn: sytu.vn

Đọc Sách

Đề Toán tuyển sinh lớp 10 năm 2018 - 2019 sở GD và ĐT Bình Phước (đề chung)
Đề Toán tuyển sinh lớp 10 năm 2018 – 2019 sở GD và ĐT Bình Phước (đề chung cho tất cả các thí sinh) được biên soạn theo hình thức tự luận với 5 bài toán, thí sinh làm bài trong thời gian 120 phút (không kể thời gian phát đề), kỳ thi được diễn ra vào ngày 01/06/2018 nhằm đánh giá, phân loại năng lực học sinh khối 9, từ đó các trường THPT thuộc sở GD và ĐT Bình Phước có căn cứ để đưa ra mức điểm tuyển sinh phù hợp, tuyển chọn các em học sinh phù hợp với tiêu chí để chuẩn bị cho năm học mới, đề thi có lời giải chi tiết .
Đề Toán tuyển sinh lớp 10 năm 2018 - 2019 sở GD và ĐT Bình Phước (đề chuyên)
Đề Toán tuyển sinh lớp 10 năm 2018 – 2019 sở GD và ĐT Bình Phước (đề dành cho thí sinh thi vào trường chuyên) được biên soạn nhằm đánh giá năng lực học sinh khối 9, từ đó các trường THPT chuyên thuộc sở GD&ĐT Bình Phước có căn cứ tuyển sinh vào lớp 10 để chuẩn bị cho năm học mới, đề gồm 1 trang với 6 bài toán tự luận, thí sinh có 120 phút để hoàn thành đề thi, kỳ thi được tổ chức vào ngày 03/06/2018, đề thi có lời giải chi tiết . Trích dẫn đề Toán tuyển sinh lớp 10 năm 2018 – 2019 sở GD và ĐT Bình Phước : + Xét các số thực a, b, c với b ≠ a + c sao cho phương trình bậc hai ax^2 + bx + c = 0 có hai nghiệm thực m, n thỏa mãn 0 ≤ m, n ≤ 1. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức M = [(a – b)(2a – c)]/[a(a – b + c)]. [ads] + Tìm tất cả các số nguyên tố p sao cho 16p + 1 là lập phương của số nguyên dương. + Cho Parabol (P): y = 1/2.x^2 và đường thẳng (d): y = (m + 1)x – m^2 – 1/2 (m là tham số). Với giá trị nào của m thì đường thẳng (d) cắt Parabol (P) tại hai điểm A(x1;y1), B(x2;y2) sao cho biểu thức T = y1 + y2 – x1.x2 đạt giá trị nhỏ nhất.
Đề Toán tuyển sinh lớp 10 THPT chuyên 2018 - 2019 sở GD và ĐT Nam Định (đề chung)
Đề Toán tuyển sinh lớp 10 THPT chuyên 2018 – 2019 sở GD và ĐT Nam Định (đề chung dành cho tất cả các thí sinh) được biên soạn theo hình thức tự luận với 5 bài toán, thí sinh làm bài trong thời gian 120 phút, đề nhằm tuyển chọn các em học sinh lớp 9 có năng khiếu môn Toán vào học tại các trường THPT chuyên tại tỉnh Nam Định, đề thi có lời giải chi tiết .
Đề Toán tuyển sinh lớp 10 THPT năm 2018 - 2019 sở GD và ĐT Đắk Lắk
Đề Toán tuyển sinh lớp 10 THPT năm 2018 – 2019 sở GD và ĐT Đắk Lắk được biên soạn vào tổ chức thi vào ngày 08/06/2018 nhằm giúp các trường THPT tại tỉnh Đắk Lắk có cở sở để tuyển chọn các em học sinh phù hợp với tiêu chí của trường để chuẩn bị cho năm học mới, đề thi có lời giải chi tiết .