Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

50 dạng toán ôn thi tốt nghiệp THPT năm 2022 môn Toán

Tài liệu gồm 186 trang, được biên soạn bởi thầy giáo Lê Quang Xe, tuyển tập 50 dạng toán ôn thi tốt nghiệp THPT năm 2022 môn Toán, tương ứng với 50 câu trắc nghiệm trong đề minh họa tốt nghiệp THPT 2022 môn Toán. 1 Số phức 1. A Kiến thức cần nhớ 1. B Bài tập mẫu 1. C Bài tập tương tự và phát triển 2. D Bảng đáp án 4. 2 Các yếu tố cơ bản về mặt cầu 5. A Kiến thức cần nhớ 5. B Bài tập mẫu 5. C Bài tập tương tự và phát triển 6. D Bảng đáp án 7. 3 Tìm điểm thuộc đồ thị, đường thẳng 8. A Kiến thức cần nhớ 8. B Bài tập mẫu 8. C Bài tập tương tự và phát triển 8. D Bảng đáp án 10. 4 Khối nón – trụ – cầu 11. A Kiến thức cần nhớ 11. B Bài tập mẫu 11. C Bài tập tương tự và phát triển 12. D Bảng đáp án 14. 5 Nguyên hàm cơ bản 15. A Kiến thức cần nhớ 15. B Bài tập mẫu 15. C Bài tập tương tự và phát triển 15. D Bảng đáp án 18. 6 Cực trị của hàm số 19. A Kiến thức cần nhớ 19. B Bài tập mẫu 20. C Bài tập tương tự và phát triển 20. D Bảng đáp án 25. 7 Bất phương trình mũ và bất phương trình lôgarit 26. A Tóm tắt lý thuyết 26. B Bài tập mẫu 26. C Bài tập tương tự và phát triển 26. D Bảng đáp án 30. 8 Thể tích của khối chóp cơ bản 31. A Kiến thức cần nhớ 31. B Bài tập mẫu 31. C Bài tập tương tự và phát triển 31. D Bảng đáp án 34. 9 Tập xác định hàm số lũy thừa, hàm số lôgarit 35. A Kiến thức cần nhớ 35. B Bài tập mẫu 35. C Bài tập tương tự và phát triển 35. D Bảng đáp án 36. 10 Phương trình lôgarit 37. A Kiến thức cần nhớ 37. B Bài tập mẫu 37. C Bài tập tương tự và phát triển 37. D Bảng đáp án 38. 11 Tích Phân sử dụng tính chất cơ bản 39. A Kiến thức cần nhớ 39. B Bài tập mẫu 39. C Bài tập tương tự và phát triển 39. D Bảng đáp án 43. 12 Phép toán trên số phức 44. A Kiến thức cần nhớ 44. B Bài tập mẫu 44. C Bài tập tương tự và phát triển 44. D Bảng đáp án 46. 13 Xác định các yếu tố cơ bản của mặt phẳng 47. A Kiến thức cần nhớ 47. B Bài tập mẫu 47. C Bài tập tương tự và phát triển 47. D Bảng đáp án 49. 14 Véc-tơ trong không gian 50. A Kiến thức cần nhớ 50. B Bài tập mẫu 51. C Bài tập tương tự và phát triển 51. D Bảng đáp án 53. 15 Điểm biểu diễn số phức 54. A Kiến thức cần nhớ 54. B Bài tập mẫu 54. C Bài tập tương tự và phát triển 55. D Bảng đáp án 57. 16 Tiệm cận 58. A Kiến thức cần nhớ 58. B Bài tập mẫu 58. C Bài tập tương tự và phát triển 58. D Bảng đáp án 62. 17 Tính giá trị lôgarit 63. A Kiến thức cần nhớ 63. B Bài tập mẫu 63. C Bài tập tương tự và phát triển 63. D Bảng đáp án 67. 18 Nhận dạng đồ thị 68. A Kiến thức cần nhớ 68. B Bài tập mẫu 70. C Bài tập tương tự và phát triển 70. D Bảng đáp án 79. 19 Phương trình đường thẳng 80. A Kiến thức cần nhớ 80. B Bài tập mẫu 82. C Bài tập tương tự và phát triển 82. 20 Hóa vị – chỉnh hợp – tổ hợp 85. A Kiến thức cần nhớ 85. B Bài tập mẫu 85. C Bài tập tương tự và phát triển 85. D Bảng đáp án 86. 21 Thể tích 87. A Kiến thức cần nhớ 87. B Bài tập mẫu 88. C Bài tập tương tự và mở rộng 88. D Bảng đáp án 89. 22 Đạo hàm của hàm số mũ, logarit 90. A Kiến thức cần nhớ 90. B Bài tập mẫu 90. C Bài tập tương tự và phát triển 90. D Bảng đáp án 91. 23 Xét tính đơn điệu của hàm số 92. A Kiến thức cần nhớ 92. B Bài tập mẫu 92. C Bài tập tương tự và phát triển 92. D Bảng đáp án 96. 24 Các yếu tố cơ bản mặt tròn xoay 97. A Kiến thức cần nhớ 97. B Bài tập mẫu 97. C Bài tập tương tự và phát triển 98. D Bảng đáp án 99. 25 Tích Phân sử dụng tính chất cơ bản 100. A Kiến thức cần nhớ 100. B Bài tập mẫu 100. C Bài tập tương tự và phát triển 100. D Bảng đáp án 101. 26 Cấp số cộng, cấp số nhân 102. A Kiến thức cần nhớ 102. B Bài tập mẫu 102. C Bài tập tương tự và phát triển 102. D Bảng đáp án 105. 27 Nguyên hàm 106. A Kiến thức cần nhớ 106. B Bài tập mẫu 106. C Bài tập tương tự và phát triển 106. D Bảng đáp án 107. 28 Cực trị của hàm số dựa vào BBT, Đồ thị 108. A Kiến thức cần nhớ 108. B Bài tập mẫu 108. C Bài tập tương tự và phát triển 109. D Bảng đáp án 110. 29 Tìm GTLN & GTNN của hàm số 111. A Kiến thức cần nhớ 111. B Bài tập tương tự và phát triển 112. C Bảng đáp án 117. 30 Xét tính đơn điệu của hàm số 118. A Kiến thức cần nhớ 118. B Bài tập mẫu 118. C Bài tập tương tự và phát triển 118. D Bảng đáp án 120. 31 Tính giá trị lôgarit 121. A Kiến thức cần nhớ 121. B Bài tập mẫu 121. C Bài tập tương tự và phát triển 121. D Bảng đáp án 124. 32 Tích phân hàm ẩn 125. A Tóm tắt lý thuyết 125. B Kiến thức cần nhớ 125. C Bài tập mẫu 125. D Bài tập tương tự và phát triển 125. E Bảng đáp án 128. 34 Viết phương trình mặt phẳng liên quan đến đường thẳng 129. A Kiến thức cần nhớ 129. B Bài tập mẫu 129. C Bài tập tương tự và phát triển 130. D Bảng đáp án 134. 35 Số phức 135. A Kiến thức cần nhớ 135. B Bài tập mẫu 135. C Bài tập tương tự và phát triển 136. D Bảng đáp án 138. 36 Khoảng cách từ điểm đến mặt phẳng 139. A Kiến thức cần nhớ 139. B Bài tập mẫu 139. C Bài tập tương tự và phát triển 140. D Bảng đáp án 144. 37 Xác suất 145. A Kiến thức cần nhớ 145. B Bài tập mẫu 146. C Bài tập tương tự và phát triển 147. D Bảng đáp án 148. 38 Phương trình đường thẳng 149. A Kiến thức cần nhớ 149. B Bài tập mẫu 151. C Bài tập tương tự và phát triển 151. 39 Bất phương trình mũ và bất phương trình lôgarit 156. A Tóm tắt lý thuyết 156. B Bài tập mẫu 156. C Bài tập tương tự và phát triển 157. D Bảng đáp án 160. 40 Tính đơn điệu của hàm số liên kết 161. A Kiến thức cần nhớ 161. B Bài tập mẫu 163. C Bài tập tương tự và phát triển 163. D Bảng đáp án 174. 41 Cực trị số phức 175. A Kiến thức cần nhớ 175. B Bài tập mẫu 176. C Bài tập tương tự và phát triển 177. D Bảng đáp án 180.

Nguồn: toanmath.com

Đọc Sách

Casio skill trắc nghiệm Nguyễn Thế Anh, Nguyễn Thế Lực
Nội dung Casio skill trắc nghiệm Nguyễn Thế Anh, Nguyễn Thế Lực Bản PDF - Nội dung bài viết Tài liệu Casio skill trắc nghiệm ver 1.0 Tài liệu Casio skill trắc nghiệm ver 1.0 Tài liệu Casio skill trắc nghiệm ver 1.0 được viết bởi 2 tác giả Nguyễn Thế Anh và Nguyễn Thế Lực. Tài liệu này bao gồm 386 trang với nhiều nội dung hấp dẫn và hữu ích dành cho người đọc. Các thông tin được trình bày một cách logic và chi tiết, giúp người đọc dễ hiểu và áp dụng vào thực tế.
Bí kíp Thế Lực 2016
Nội dung Bí kíp Thế Lực 2016 Bản PDF - Nội dung bài viết Bí kíp Thế Lực 2016 - Phân tích chi tiết về sản phẩm Bí kíp Thế Lực 2016 - Phân tích chi tiết về sản phẩm Tài liệu Bí kíp Thế Lực 2016 là bản scan đầy đủ từ cuốn sách cùng tên của tác giả Nguyễn Thế Lực. Sách gồm 216 trang, tập trung vào các kinh nghiệm giải toán đối với 3 câu phân loại trong đề thi THPT Quốc gia: Phương trình, Oxy và Bất đẳng thức. Phần nội dung tài liệu được chia thành các phần sau: I. Bí kíp phương trình - bất phương trình: 1. Giới thiệu, yêu cầu và các phương pháp cơ bản cần nắm vững 2. Basic Skill: Bao gồm cách giải phương trình cho nghiệm đẹp và nghiệm xấu, đánh giá sau liên hợp và truy ngược dấu, cũng như một số bài khó bấm máy thường liên quan đến ẩn phụ 3. Advance Skill: Kỹ năng tiên tiến như ép liên hợp và ép hàm số 4. Một số bài tập tự luyện có hướng dẫn II. Bí kíp hệ phương trình: 1. Khái quát hướng giải hệ phương trình cơ bản và kiến thức cần nắm 2. Cách tìm mối quan hệ giữa x và y bằng máy tính từ 1 phương trình 3. Dạng hệ phải kết hợp 2 phương trình 4. Một số kỹ năng bổ trợ giải hệ phương trình 5. Các bài tập rèn luyện III. Bí kíp Oxy: 1. Các kiến thức cần nhớ 2. Tư duy giải Oxy 3. Các bổ đề phụ cần biết, cách chứng minh và áp dụng 4. Chuẩn hóa Oxy 5. Các bước làm một bài toán Oxy 6. Hệ thống bài tập rèn luyện có lời giải IV. Bí kíp bất đẳng thức: 1. Kiến thức cần nhớ và hướng làm chung 2. Bấm máy cày dấu bằng "=" 3. Một số bất đẳng thức đánh giá tại biên 4. Kinh nghiệm giải bất đẳng thức 5. Hệ thống bài tập rèn luyện Đây là tài liệu cực kỳ hữu ích để học sinh tự luyện tập và nắm vững kiến thức các phần phức tạp trong môn Toán. Bí kíp Thế Lực 2016 sẽ giúp bạn hiểu rõ hơn về các phương trình, hệ phương trình, Oxy, và bất đẳng thức, từ cơ bản đến nâng cao.
Các chuyên đề luyện thi THPT Quốc gia môn Toán Nguyễn Văn Lực
Nội dung Các chuyên đề luyện thi THPT Quốc gia môn Toán Nguyễn Văn Lực Bản PDF - Nội dung bài viết Tài liệu chuyên đề luyện thi THPT Quốc gia môn Toán Nguyễn Văn Lực Tài liệu chuyên đề luyện thi THPT Quốc gia môn Toán Nguyễn Văn Lực Tài liệu chuyên đề luyện thi THPT Quốc gia môn Toán của tác giả Nguyễn Văn Lực bao gồm 372 trang. Được xây dựng dựa trên hệ thống bài tập được chọn lọc và giải chi tiết, được phân loại theo từng chuyên đề. Đây sẽ là công cụ hữu ích giúp học sinh ôn tập, nắm vững kiến thức và rèn luyện kỹ năng làm bài thi môn Toán một cách hiệu quả.
Kĩ năng sử dụng máy tính Casio trong giải toán Bùi Thế Việt
Nội dung Kĩ năng sử dụng máy tính Casio trong giải toán Bùi Thế Việt Bản PDF - Nội dung bài viết Kĩ Năng Sử Dụng Máy Tính Casio Trong Giải Toán Kĩ Năng Sử Dụng Máy Tính Casio Trong Giải Toán Trong các dụng cụ học tập được phép mang vào phòng thi trong các kỳ thi đại học, kỳ thi THPT Quốc Gia thì máy tính cầm tay là dụng cụ không thể thiếu giúp chúng ta tính toán nhanh chóng. Máy tính cầm tay không chỉ giúp chúng ta tính toán một cách chính xác mà còn là một trợ thủ đắc lực trong việc giải toán, đặc biệt là giải Phương Trình, Hệ Phương Trình, Bất Phương Trình, Bất Đẳng Thức và nhiều loại toán khác. Tác giả Bùi Thế Việt là một người rất đam mê với những kỹ năng, thủ thuật sử dụng máy tính cầm tay trong giải toán. Đã có nhiều trường hợp tác giả áp dụng những kỹ năng này vào các kỳ thi và đạt được kết quả đáng kinh ngạc. Việt chia sẻ rằng chỉ cần vài phút, anh đã giải quyết một câu Phương Trình Vô Tỷ một cách chính xác và nhanh chóng. Để sử dụng máy tính Casio một cách hiệu quả, hãy đến với chuyên đề Kỹ Năng Sử Dụng Casio Trong Giải Toán. Chuyên đề này giới thiệu 8 kỹ năng sử dụng máy tính Casio trong việc giải các loại toán khác nhau. Các thủ thuật bao gồm: Thủ thuật sử dụng Casio để rút gọn biểu thức. Thủ thuật sử dụng Casio để giải phương trình bậc 4. Thủ thuật sử dụng Casio để tìm nghiệm phương trình. Thủ thuật sử dụng Casio để phân tích đa thức thành nhân tử một ẩn. Thủ thuật sử dụng Casio để phân tích đa thức thành nhân tử hai ẩn. Thủ thuật sử dụng Casio để giải hệ phương trình. Thủ thuật sử dụng Casio để tích nguyên hàm, tích phân. Thủ thuật sử dụng Casio để giải bất đẳng thức. Đến với chuyên đề này, bạn sẽ được trải nghiệm những thủ thuật đặc biệt mà máy tính Casio có thể mang lại. Hãy học ngay để nâng cao khả năng giải toán của mình và đạt được kết quả xuất sắc trong các kỳ thi.