Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 Toán 11 năm 2021 - 2022 trường THPT Nguyễn Thị Minh Khai - TP HCM

Ngày … tháng 01 năm 2022, trường THPT Nguyễn Thị Minh Khai, quận 1, thành phố Hồ Chí Minh tổ chức kỳ thi kiểm tra chất lượng định kỳ môn Toán khối 11 giai đoạn cuối học kì 1 năm học 2021 – 2022. Đề thi học kì 1 Toán 11 năm 2021 – 2022 trường THPT Nguyễn Thị Minh Khai – TP HCM được biên soạn theo hình thức đề thi tự luận 100%, đề gồm 01 trang với 06 bài toán, thời gian học sinh làm bài thi là 90 phút (không kể thời gian phát đề), đề thi có đáp án, lời giải chi tiết và biểu điểm. Trích dẫn đề thi học kì 1 Toán 11 năm 2021 – 2022 trường THPT Nguyễn Thị Minh Khai – TP HCM : + Cho hình chóp S ABCD có mặt đáy ABCD là hình thang, cạnh đáy lớn AD BC 2. Gọi H là trung điểm của AD I là trung điểm của SA. a) Tìm giao tuyến của hai mặt phẳng SAD và SBC. b) Chứng minh rằng đường thẳng CH song song với mặt phẳng SAB. c) Chứng minh rằng mặt phẳng BIH song song với mặt phẳng SCD. d) Gọi M là trung điểm của SB đường thẳng SA cắt mặt phẳng MCD tại L. Tính tỉ số SL SA. + Chọn ngẫu nhiên 3 số tự nhiên khác nhau từ tập A 1 2 3 … 80. Tính xác suất để trong 3 số được chọn có đúng 2 số là số chính phương. + Tìm hệ số của số hạng chứa 4 x trong khai triển nhị thức Newton của 7 2 3 1 2x x với x 0. + Dùng phương pháp qui nạp toán học, chứng minh rằng với mọi số nguyên dương n ta luôn có 2 1 3 1 n n u chia hết cho 4 + Tìm số hạng đầu tiên u1 và công sai d của cấp số cộng un biết 1 3 2 5 u u u u.

Nguồn: toanmath.com

Đọc Sách

Đề thi cuối học kì 1 Toán 11 năm 2019 - 2020 trường THPT Phước Long - TP HCM
Đề thi cuối học kì 1 Toán 11 năm học 2019 – 2020 trường THPT Phước Long, thành phố Hồ Chí Minh gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi cuối học kì 1 Toán 11 năm 2019 – 2020 trường THPT Phước Long – TP HCM : + Một hộp đựng 22 viên bi khác nhau trong đó có 12 viên bi đỏ và 10 viên bi vàng. Chọn ngẫu nhiên từ hộp 7 viên bi và tính xác suất để: a) chọn đươc 7 viên bi cùng màu. b) chọn được 7 viên bi có đủ hai màu và thỏa mãn điều kiện số viên bi màu đỏ nhiều hơn số viên bi màu vàng. + Xếp 12 quyển sách gồm 1 quyển sách Hóa, 3 quyển sách Lý và 8 quyển sách Toán (trong đó có 3 quyển Toán T1, Toán T2 và Toán T3) thành một hàng trên giá sách. Tính xác suất để mỗi quyển sách Lý phải nằm giữa hai quyển sách Toán và đồng thời ba quyển sách Toán T1, Toán T2, Toán T3 luôn xếp cạnh nhau. + Cho hình chóp S.ABCD có đáy ABCD hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của SD và AB. a) Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC). b) Chứng minh hai mặt phẳng (OMN) và (SBC) song song với nhau. c) Trên cạnh SA lấy điểm H sao cho HS = 2HA. Gọi G là trọng tâm tam giác SCD, chứng minh HG song song với mặt phẳng (SCN).
Đề thi cuối học kì 1 Toán 11 năm 2019 - 2020 trường THPT Nguyễn Hữu Huân - TP HCM
Đề thi cuối học kì 1 Toán 11 năm học 2019 – 2020 trường THPT Nguyễn Hữu Huân, thành phố Hồ Chí Minh gồm 01 trang với 07 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi cuối học kì 1 Toán 11 năm 2019 – 2020 trường THPT Nguyễn Hữu Huân – TP HCM : + Biển số xe máy của tỉnh K gồm hai dòng (hình 1). Dòng thứ nhất là 68XY, trong đó X là một trong 24 chữ cái, Y là một trong 10 chữ số. Dòng thứ hai là abc.de, trong đó a, b, c, d, e là các chữ số. Biển số xe được gọi là “đẹp” khi dòng thứ hai có tổng các chữ số là số có chữ số tận cùng là 8 và có đúng 4 chữ số giống nhau. Cô Vân đăng kí một biển số cho chiếc xe vừa mua. Tính xác suất cô Vân đăng kí được biển số xe “đẹp”. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N là trung điểm SD, SA. a) Chứng minh: (OMN) // (SBC). b) Gọi G là trọng tâm tam giác ACD, I là giao điểm của BM và CN. Chứng minh: GI // (SAD). c) Gọi (P) là mặt phẳng qua G và song song với (SAD). Tìm thiết diện của hình chóp và mp(P). Thiết diện là hình gì? + Một bàn dài có 6 ghế được đánh số từ 1 đến 6. Cô Trinh muốn xếp 3 bạn nam và 3 bạn nữ ngồi vào bàn với điều kiện ghế số 1 và ghế số 2 phải là 2 bạn nữ. Hỏi cô Trinh có bao nhiêu cách xếp như vậy?
Đề thi cuối học kì 1 Toán 11 năm 2019 - 2020 trường THPT Phan Đăng Lưu - TP HCM
Đề thi cuối học kì 1 Toán 11 năm học 2019 – 2020 trường THPT Phan Đăng Lưu, thành phố Hồ Chí Minh gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi cuối học kì 1 Toán 11 năm 2019 – 2020 trường THPT Phan Đăng Lưu – TP HCM : + Nhân dịp năm mới, Tổ trưởng tổ Toán – Tin của một trường THPT có 10 bao lì xì loại 200 ngàn đồng cho mỗi bao lì xì và 20 bao lì xì loại 100 ngàn đồng cho mỗi bao lì xì. Một giáo viên nữ đẹp được chọn ngẫu nhiên 3 bao lì xì, tính xác suất để: a) được 3 bao lì xì loại 200 ngàn đồng. b) được ít nhất một bao lì xì loại 200 ngàn đồng. + Cho hình chóp S.ABCD, có ABCD là hình bình hành. Gọi M là trung điểm các đoạn SC và N là trọng tâm tam giác ABC. Trên đoạn SD lấy điểm J sao cho SJ = 2JD. a) Tìm giao tuyến của hai mặt phẳng (SAB) và (SCD); (SAC) và (SBD). b) Tìm giao điểm I của đường thẳng SD và mặt phẳng (AMN). c) Chứng minh đường thẳng SB song song mặt phẳng (AMN). d) Chứng minh đường thẳng CJ song song mặt phẳng (AMN). + Từ các số 0, 1, 2, 3, 4, 5, 7, 8 có thể lập được bao nhiêu số tự nhiên có 5 chữ số khác nhau và chia hết cho 5?
Đề thi HK1 Toán 11 năm 2019 - 2020 trường Nguyễn Trung Thiên - Hà Tĩnh
Đề thi HK1 Toán 11 năm 2019 – 2020 trường Nguyễn Trung Thiên – Hà Tĩnh gồm 25 câu trắc nghiệm (05 điểm) và 03 câu tự luận (05 điểm), thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HK1 Toán 11 năm 2019 – 2020 trường Nguyễn Trung Thiên – Hà Tĩnh : + Tìm mệnh đề đúng trong các mệnh đề sau: A. Hai đường thẳng không song song với nhau thì chéo nhau. B. Hai đường thẳng không có điểm chung thì chéo nhau. C. Hai đường thẳng chéo nhau thì không có điểm chung. D. Hai đường thẳng nằm trên hai mặt phẳng phân biệt thì chéo nhau. + Cho tứ diện ABCD, gọi M, N lần lượt là trung điểm của AB, CD và P là điểm thuộc cạnh BC (P không là trung điểm của BC). Thiết diện của tứ diện khi cắt bởi mặt phẳng (MNP) là? A. Tứ giác. B. Ngũ giác. C. Lục giác. D. Tam giác. + Có hai dãy ghế đối diện nhau, mỗi dãy có bốn ghế. Có bao nhiêu cách sắp xếp 8 học sinh gồm 4 nam và 4 nữ ngồi vào hai dãy ghế đó sao cho 2 bạn ngồi đối diện nhau khác giới và mỗi ghế có đúng một học sinh ngồi.