Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Một số phương pháp giải bài toán phương trình nghiệm nguyên

Tài liệu gồm 67 trang, hướng dẫn một số phương pháp giải bài toán phương trình nghiệm nguyên, kèm các ví dụ minh họa có đáp số và hướng dẫn giải chi tiết. I. MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH NGHIỆM NGUYÊN Phương pháp 1 . Sử dụng các tính chất về quan hệ chia hết. Khi giải các phương trình nghiệm nguyên cần vận dụng linh hoạt các tính chất về chia hết, đồng dư, tính chẵn lẻ,… để tìm ra điểm đặc biệt của các ẩn số cũng như các biểu thức chứa ẩn trong phương trình, từ đó đưa phương trình về các dạng mà ta đã biết cách giải hoặc đưa về những phương trình đơn giản hơn. + Xét số dư hai vế của phương trình để chỉ ra phương trình không có nghiệm, tính chẵn lẻ của các vế. + Đưa phương trình về dạng phương trình ước số. + Phát hiện tính chia hết của các ẩn. + Sử dụng tính đồng dư của các đại lượng nguyên. Phương pháp 2 . Đưa hai vế về tổng các bình phương. Ý tưởng của phương pháp là biến đổi phương trình về dạng vế trái là tổng của các bình phương và vế phải là tổng của các số chính phương. Phương pháp 3 . Sử dụng các tính chất của số chính phương. Một số tính chất của số chính phương thường được dùng trong giải phương trình nghiệm nguyên. + Một số tính chất về chia hết của số chính phương. + Nếu 2 2 a n a1 với a là số nguyên thì n không thể là số chính phương. + Nếu hai số nguyên dương nguyên tố cùng nhau có tích là một số chính phương thì mỗi số đếu là số chính phương. + Nếu hai số nguyên liên tiếp có tích là một số chính phương thì một trong hai số nguyên đó bằng 0. Phương pháp 4 . Phương pháp đánh giá. Trong khi giải các phương trình nghiệm nguyên rất cần đánh giá các miền giá trị của các ẩn, nếu số giá trị mà biến số có thể nhận không nhiều có thể dùng phương pháp thử trực tiếp để kiểm tra. Để đánh giá được miền giá trị của biến số cần vận dụng linh hoạt các tính chất chia hết, đồng dư, bất đẳng thức. + Phương pháp sắp thứ tự các ẩn. + Xét khoảng giá trị của các ẩn. + Sử dụng các bất đẳng thức Cauchy, Bunhiacopxki. Phương pháp 5 . Sử dụng tính chất của phương trình bậc hai. Ý tưởng của phương pháp là quy phương trình đã cho về dạng phương trình bậc hai một ẩn, các ẩn còn lại đóng vai trò tham số. Khi đó các tính chất của phương trình bậc hai thường được sử dụng dưới các dạng như sau: + Sử dụng điều kiện có nghiệm ∆ ≥ 0 của phương trình bậc hai. + Sử dụng hệ thức Vi – et. + Sử dụng điều kiện ∆ là số chính phương. Phương pháp 6 . Phương pháp lùi dần vô hạn. Ý tưởng của phương pháp lùi dần vô hạn có thể hiểu như sau: Giả sử (x y z 0 0 0) là nghiệm của f x y z 0. Nhờ những biến đổi và suy luận số học ta tìm được một nghiệm khác (x y z 1 1 1) sao cho các nghiệm quan hệ với bộ nghiệm đầu tiên bởi một tỉ số k nào đó, chẳng hạn 0 1 0 10 1 x kx y ky z kz. Lập luận tương tự ta lại được bộ số nguyên (x y z 2 2 2) thỏa mãn 1 2 1 11 2 x kx y ky z kz. Quá trình cứ tiếp tục dẫn đến 0 00 x y z cùng chia hết cho n k với n là một số tự nhiên tuỳ ý. Điều này xảy ra khi và chỉ khi xyz0. Để rõ ràng hơn ta xét các ví dụ sau. II. MỘT SỐ DẠNG PHƯƠNG TRÌNH NGHIỆM NGUYÊN Phương trình nghiệm nguyên rất đa dạng và phong phú, nó có thể là phương trình một ẩn hay nhiều ẩn. Nó có thể là phương trình bậc nhất hoặc bậc cao. Cũng có những phương trình dạng đa thức hoặc dạng lũy thừa. Ta có thể chia phương trình nghiệm nguyên thành một số dạng như sau. 1. Phương trình nghiệm nguyên dạng đa thức. 2. Phương trình nghiệm nguyên dạng phân thức. 3. Phương trình nghiệm nguyên có chứa căn. 4. Phương trình nghiệm nguyên dạng lũy thừa. 5. Hệ phương trình nghiệm nguyên.

Nguồn: toanmath.com

Đọc Sách

101 bài toán Parabol và các vấn đề liên quan Lương Tuấn Đức
Nội dung 101 bài toán Parabol và các vấn đề liên quan Lương Tuấn Đức Bản PDF - Nội dung bài viết 101 bài toán Parabol và các vấn đề liên quan 101 bài toán Parabol và các vấn đề liên quan Trên mặt phẳng hàm số và đồ thị, tài liệu này tập trung vào việc giải quyết một loạt các bài toán liên quan đến hàm số bậc hai, đặc biệt là parabol đơn giản (ở dạng y = ax^2) có đỉnh tại gốc tọa độ O. Nội dung bao gồm khảo sát sự thay đổi của hàm số, vẽ đồ thị parabol, xác định vị trí tương đối giữa parabol và đường thẳng, một số bài toán kết hợp yếu tố lượng giác và hình học giải tích. Mục tiêu chính của tài liệu là hỗ trợ quá trình dạy và học, chuẩn bị cho kỳ thi tuyển sinh lớp 10 THPT, cung cấp nền tảng cho tư duy hàm số và hình học giải tích ở cấp trung học phổ thông. Nội dung chi tiết của tài liệu bao gồm: Sự biến thiên của hàm số bậc hai Vẽ đồ thị parabol đơn giản Xác định vị trí tương đối giữa đường thẳng và parabol Các bài toán kết hợp yếu tố hình học Bài toán có nhiều cách giải khác nhau Tài liệu không chỉ dừng lại ở mức độ cơ bản mà còn mở rộng kiến thức, khuyến khích sự sáng tạo và đột phá trong các vấn đề toán học và ứng dụng chúng trong các môn khoa học tự nhiên. Mong rằng độc giả sẽ thấy hứng thú và thú vị khi nghiên cứu về đồ thị parabol và các vấn đề liên quan trong tài liệu này.
123 bài toán hàm số bậc nhất và đường thẳng Lương Tuấn Đức
Nội dung 123 bài toán hàm số bậc nhất và đường thẳng Lương Tuấn Đức Bản PDF - Nội dung bài viết Sản phẩm 123 bài toán hàm số bậc nhất và đường thẳng Lương Tuấn Đức Sản phẩm 123 bài toán hàm số bậc nhất và đường thẳng Lương Tuấn Đức Trong lĩnh vực Toán học sơ cấp nói chung và Đại số phổ thông nói riêng, hàm số và đồ thị là những dạng toán cơ bản nhưng rất thú vị. Chúng có phạm vi rộng lớn, liên kết chặt chẽ với nhiều phần khác của toán học sơ cấp và hiện đại. Ở Việt Nam, kiến thức về hàm số và đồ thị đóng vai trò quan trọng trong giáo dục, được giảng dạy trong chương trình sách giáo khoa từ lớp 7, tiếp tục qua các lớp 9, 10, 11, 12 cùng với các kiến thức liên quan. Các kỹ năng về hàm số, đồ thị được rèn luyện đều đặn, bài bản và có hệ thống để hữu ích không chỉ trong môn Toán mà còn phục vụ cho các môn khoa học tự nhiên khác như Hóa học, Vật lý, Địa lý, Sinh học. Trong chương trình Đại số lớp 9 THCS, hàm số và đồ thị đóng vai trò quan trọng trong các đề thi kiểm tra, đề thi tuyển sinh lớp 10 THPT và các trường chuyên. Các bài toán về hàm số và đồ thị tạo cơ sở cho kiến thức chính trong các lớp 10, 12, bao gồm cả hàm số bậc cao và bài toán hình học giải tích. Trong tác phẩm về hàm số và đồ thị, tác giả tập trung vào các bài toán khảo sát biến thiên, vẽ đồ thị của hàm số bậc nhất (đường thẳng), vị trí tương đối giữa các đường thẳng, cũng như vị trí tương đối giữa đường thẳng và đường cong. Ngoài ra, có những bài toán kết nối với yếu tố lượng giác và hình học giải tích. Đồng thời, tác giả cố gắng mở rộng, nâng cao từng bài toán theo nội dung chính về hàm số bậc THPT. Điều này giúp phát triển tư duy hàm số, tư duy hình học giải tích cho học sinh THCS và tạo cơ sở cho các kỳ thi đầy cam go như kỳ thi tuyển sinh đại học – cao đẳng, kỳ thi THPT Quốc gia. Tóm lại, việc nghiên cứu đường thẳng và hàm số không chỉ giúp học sinh hiểu sâu hơn về toán học mà còn giúp họ áp dụng kiến thức vào các môn khoa học khác một cách sáng tạo và linh hoạt.
Chuyên đề bất đẳng thức
Nội dung Chuyên đề bất đẳng thức Bản PDF - Nội dung bài viết Chuyên đề bất đẳng thức Chuyên đề bất đẳng thức Tài liệu này bao gồm 28 trang chứa các phương pháp chứng minh bất đẳng thức và ví dụ về việc áp dụng bất đẳng thức trong các trường hợp cụ thể. Những phương pháp được trình bày trong tài liệu này giúp độc giả hiểu rõ hơn về cách chứng minh và áp dụng bất đẳng thức trong các bài toán. Với nhiều ví dụ minh họa và các phần trình bày chi tiết, tài liệu này sẽ giúp cho việc học và nghiên cứu về bất đẳng thức trở nên dễ dàng và thuận lợi hơn.
Tài liệu ôn thi tuyển sinh vào môn Toán Trần Quốc Nghĩa
Nội dung Tài liệu ôn thi tuyển sinh vào môn Toán Trần Quốc Nghĩa Bản PDF - Nội dung bài viết Tài liệu ôn thi tuyển sinh môn Toán Trần Quốc Nghĩa Tài liệu ôn thi tuyển sinh môn Toán Trần Quốc Nghĩa Tài liệu ôn thi này bao gồm 160 trang với nội dung chi tiết và cụ thể để giúp các học sinh chuẩn bị cho kỳ thi tuyển sinh vào Trần Quốc Nghĩa. Tài liệu được chia thành các phần sau: Phần 1: BÀI TẬP THEO CHUYÊN ĐỀ - Vấn đề 1: CĂN THỨC - Vấn đề 2: HÀM SỐ VÀ ĐỒ THỊ + I. Hàm số bậc nhất + II. Hàm số bậc hai + III. Sự tương giao giữa parabol (P) và đường thẳng (d) - Vấn đề 3: PHƯƠNG TRÌNH + I. Phương trình bậc nhất + II. Phương trình bậc hai + III. Phương trình trùng phương + IV. Phương trình chứa căn thức và trị tuyệt đối + V. Phương trình chứa tham số + VI. Phương trình chứa ẩn ở mẫu. Phương trình bậc cao - Vấn đề 4: HỆ PHƯƠNG TRÌNH + I. Giải hệ phương trình + II. Hệ phương trình chứa tham số - Vấn đề 5: BẤT PHƯƠNG TRÌNH - Vấn đề 6: GIẢI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH HỆ THỨC LẬP PT – HPT - Vấn đề 7: HÌNH HỌC + I. Hệ thức lượng trong tam giác + II. Đường tròn + III. Hình trụ – Hình nón – Hình cầu - Vấn đề 8: BÀI TẬP TỔNG HỢP Phần 2: ĐỀ THI BÌNH DƯƠNG Phần 3: ĐỀ THI TPHCM Phần 4: ĐỀ THI CÁC TỈNH NĂM 2015 – 2016 Tài liệu này sẽ giúp học sinh ôn tập hiệu quả và tự tin chuẩn bị cho kỳ thi tuyển sinh vào Trần Quốc Nghĩa. Mong rằng thông tin trên sẽ hữu ích cho tất cả các bạn học sinh đang hướng tới mục tiêu lớn của mình.