Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề định lí và chứng minh định lí Toán 7

Tài liệu gồm 19 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề định lí và chứng minh định lí trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. 1. Định lí. Giả thiết và kết luận của định lí: – Định lí là một khẳng định được suy ra từ những khẳng định đúng đã biết. Mỗi định lí thường được phát biểu dưới dạng: “Nếu … thì …”. – Phần giữa từ “nếu” và từ “thì” là giả thiết của định lí. – Phần sau từ “thì” là kết luận của định lí. 2. Thế nào là chứng minh định lí? – Chứng minh một định lí là dùng lập luận để từ giả thiết và những khẳng định đúng đã biết để suy ra kết luận của định lí. PHẦN II . CÁC DẠNG BÀI. Dạng 1. Xác định giả thiết và kết luận của định lí. – Mỗi định lí thường được phát biểu dưới dạng: “Nếu … thì …”. – Phần giữa từ “nếu” và từ “thì” là giả thiết của định lí. – Phần sau từ “thì” là kết luận của định lí. Dạng 2. Chứng minh định lí. – Chứng minh một định lí là dùng lập luận để từ giả thiết và những khẳng định đúng đã biết để suy ra kết luận của định lí. PHẦN III . BÀI TẬP TỰ LUYỆN.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề hai đường thẳng vuông góc
Tài liệu gồm 11 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề hai đường thẳng vuông góc, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 1: Đường thẳng vuông góc, đường thẳng song song. Mục tiêu : Kiến thức: + Phát biểu được định nghĩa hai đường thẳng vuông góc. + Nắm vững cách vẽ và tính chất về hai đường thẳng vuông góc. + Nắm vững định nghĩa đường trung trực của đoạn thẳng. Kĩ năng: + Vẽ được hai đường thẳng vuông góc; đường trung trực của đoạn thẳng. + Chứng minh được một số bài toán vuông góc đơn giản. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1: Vẽ hình. Dạng 2: Chứng minh hai đường thẳng vuông góc. Dạng 3: Các bài toán vận dụng.
Chuyên đề hai góc đối đỉnh
Tài liệu gồm 09 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề hai góc đối đỉnh, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 1: Đường thẳng vuông góc, đường thẳng song song. Mục tiêu : Kiến thức: + Phát biểu được khái niệm hai góc đối đỉnh. + Nắm vững tính chất cơ bản của hai góc đối đỉnh. Kĩ năng: + Nhận biết được hai góc đối đỉnh. + Vận dụng được tính chất của hai góc đối đỉnh vào tính số đo góc. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1: Nhận biết hai góc đối đỉnh. Dạng 2: Tính số đo góc. Dạng 3: Chứng minh hai góc đối đỉnh.
Chuyên đề nghiệm của đa thức một biến
Tài liệu gồm 10 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề nghiệm của đa thức một biến, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Đại số chương 4: Biểu thức đại số. Mục tiêu : Kiến thức: + Nắm vững định nghĩa nghiệm của đa thức một biến. + Nhận biết được số nghiệm của đa thức một biến không vượt quá số bậc của đa thức. Kĩ năng: + Kiểm tra được một số có là nghiệm của đa thức một biến hay không. + Tìm được nghiệm của một số đa thức một biến dạng đơn giản. + Biết cách chứng minh đa thức vô nghiệm. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1: Kiểm tra nghiệm của đa thức. Dạng 2: Tìm nghiệm của đa thức. + Bài toán 1. Tìm nghiệm của đa thức. + Bài toán 2. Chứng minh đa thức không có nghiệm. Dạng 3. Tìm đa thức một biến có nghiệm cho trước.
Chuyên đề cộng, trừ đa thức một biến
Tài liệu gồm 08 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề cộng, trừ đa thức một biến, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Đại số chương 4: Biểu thức đại số. Mục tiêu : Kiến thức: + Hiểu và nắm vững cách cộng, trừ đa thức theo hàng ngang và theo hàng dọc. Kĩ năng: + Thực hiện được cộng, trừ đa thức theo hàng ngang và theo hàng dọc. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1: Tính tổng hoặc hiệu của hai đa thức. Dạng 2: Tìm đa thức chưa biết trong một đẳng thức.