Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL lớp 10 môn Toán lần 1 năm 2022 2023 trường THPT chuyên Vĩnh Phúc

Nội dung Đề KSCL lớp 10 môn Toán lần 1 năm 2022 2023 trường THPT chuyên Vĩnh Phúc Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề khảo sát chất lượng môn Toán lớp 10 thi tốt nghiệp THPT lần 1 năm học 2022 – 2023 trường THPT chuyên Vĩnh Phúc, tỉnh Vĩnh Phúc; đề thi mã đề 135 được biên soạn theo hình thức 100% trắc nghiệm, đề gồm 05 trang với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án. Trích dẫn Đề KSCL Toán lớp 10 lần 1 năm 2022 – 2023 trường THPT chuyên Vĩnh Phúc : + Kết quả đo chiều dài của một cây cầu được ghi là 152m ± 0,2m, điều đó có nghĩa là gì? A. Chiều dài đúng của cây cầu là 151,8m hoặc là 152,2 m. B. Chiều dài đúng của cây cầu là một số nằm trong đoạn từ 151,8m đến 152,2 m. C. Chiều dài đúng của cây cầu là một số lớn hơn 152 m. D. Chiều dài đúng của cây cầu là một số nhỏ hơn 152 m. + Bác Ba có một mảnh đất rộng 6 ha. Bác dự tính trồng cà chua và ngô cho mùa vụ sắp tới. Nếu trồng ngô thì bác Ba cần 10 ngày để trồng một ha. Nếu trồng cà chua thì bác Ba cần 20 ngày để trồng một ha. Biết rằng mỗi ha ngô sau thu hoạch bán được 30 triệu đồng, mỗi ha cà chua sau thu hoạch bán được 50 triệu đồng và bác Ba chỉ còn 100 ngày để canh tác cho kịp mùa vụ. Số tiền nhiều nhất mà bác Ba có thể thu được sau mùa vụ này là bao nhiêu. A. 180 triệu. B. 260 triệu. C. 250 triệu. D. 270 triệu. + Trong một lạng (100 gam) thịt bò chứa khoảng 26 gam protein và một lạng cá rô phi chứa khoảng 20 gam protein. Trung bình trong một ngày, một người đàn ông cần tối thiểu 52 gam protein. Gọi x, y lần lượt là số lạng thịt bò và số lạng cá rô phi mà một người đàn ông nên ăn trong một ngày. Đâu là bất phương trình bậc nhất hai ẩn x, y biểu diễn lượng protein cần thiết cho một người đàn ông trong một ngày? Biết rằng trong một ngày đó, người đàn ông chỉ dùng hai loại thịt bò và thịt cá rô phi. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra định kỳ học kì 1 (HK1) lớp 10 môn Toán trường THPT Võ Thành Trinh An Giang
Nội dung Đề kiểm tra định kỳ học kì 1 (HK1) lớp 10 môn Toán trường THPT Võ Thành Trinh An Giang Bản PDF Đề kiểm tra định kỳ học kỳ 1 môn Toán lớp 10 trường THPT Võ Thành Trinh – An Giang gồm 4 mã đề, mỗi đề gồm 2 trang với 16 câu trắc nghiệm và 2 câu tự luận, thời gian làm bài 45 phút, tất cả các mã đề đều có đáp án . Trích dẫn đề thi : + Cho hai tập hợp A = {1; 2; 3; 4; 5} và B = {2; 4; 6; 8}. Xác định tập hợp A ∪ B. A. A ∪ B = {1; 3; 5} B. A ∪ B = {1; 2; 3; 4; 5; 6; 7; 8} C. A ∪ B = {1; 2; 3; 4; 5; 6; 8} D. A ∪ B = {2; 4} [ads] + Phủ định của mệnh đề “∀x ∈ R : x^2 + x + 2 > 0” là mệnh đề nào sau đây? A. ∃x ∈ R : x^2 + x + 2 < 0 B. ∀x ∈ R : x^2 + x + 2 < 0 C. ∃x ∈ R : x^2 + x + 2 ≤ 0 D. ∀x ∈ R : x^2 + x + 2 ≤ 0 + Hàm số nào trong các hàm số sau đây có đồ thị như hình bên? A. y = x − 3 B. y = 2x − 3 C. y = 4x − 6 D. y = −4x + 6
Đề kiểm tra định kỳ lần 2 lớp 10 môn Toán năm 2019 2020 trường THPT chuyên Bắc Ninh
Nội dung Đề kiểm tra định kỳ lần 2 lớp 10 môn Toán năm 2019 2020 trường THPT chuyên Bắc Ninh Bản PDF Đề kiểm tra định kỳ lần 2 Toán lớp 10 năm học 2019 – 2020 trường THPT chuyên Bắc Ninh gồm có hai đề riêng biệt: đề dành cho các lớp 10 chuyên Vật lý – chuyên Hóa học – chuyên Tin học và đề dành cho các lớp 10 chuyên Ngữ Văn – chuyên Sinh học – chuyên Tiếng Anh, kỳ thi được diễn ra trong giai đoạn giữa học kỳ 1 năm học 2019 – 2020. Trích dẫn đề kiểm tra định kỳ lần 2 Toán lớp 10 năm 2019 – 2020 trường THPT chuyên Bắc Ninh : + Cho hàm số y = -x^2 + (2m – 3)x + 1 – m^2 (trong đó m là tham số). a) Lập bảng biến thiên và vẽ đồ thị hàm số với m = 2. b) Tìm tất cả giá trị của m đề đồ thị hàm số cắt trục hoành tại hai điểm phân biệt khác O và nằm khác phía nhau đối với điểm O. c) Tìm điều kiện của tham số m để hàm số đã cho nghịch biến trên khoảng (0;2019). + Trên mặt phẳng tọa độ Oxy cho bốn điểm A(0;1), B(-1;3), C(5;6), D(4;3). a ) Chứng tỏ rằng bốn điểm đã cho tạo thành một hình thang có đáy là AD và BC. b) Biết I là điểm thỏa mãn 2.IA + 2.IB + 3.IC + 3.ID = 0. Chứng minh I nằm trên đường trung bình của hình thang tạo bởi bốn điểm đã cho. + Cho ba số thực không âm a, b, c thỏa mãn a + b + c = 3 và không có số nào lớn hơn 2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức A = √(1 + a) + √(1 + b) + √(1 + c).
Đề KSCL giữa HK1 Toán 10 năm 2018 - 2019 trường THPT Bùi Thị Xuân - TT. Huế
Đề KSCL giữa HK1 Toán 10 năm 2018 – 2019 trường THPT Bùi Thị Xuân – TT. Huế mã đề 001 gồm 2 trang với 24 câu hỏi trắc nghiệm khách quan (chiếm 8 điểm) và 1 bài toán tự luận (2 điểm), yêu câu học sinh hoàn thành bài làm trong thời gian 45 phút, đề KSCL có đáp án và lời giải chi tiết. Trích dẫn đề KSCL giữa HK1 Toán 10 năm 2018 – 2019 trường THPT Bùi Thị Xuân – TT. Huế : + Biết đồ thị hàm số y = ax + b là đường thẳng đi qua K(5;-4) và vuông góc với đường thẳng y = x + 4 .Giá trị của biểu thức A = a + 2b bằng? + Cho hàm số y = x − 1 có đồ thị là đường thẳng ∆. Đường thẳng ∆ tạo với hai trục tọa độ một tam giác có diện tích bằng? [ads] + Cho hàm số y = x^2 – 2x – 1. Mệnh đề nào sau đây sai? A. Hàm số giảm trên khoảng (−∞;1). B. Đồ thị hàm số có trục đối xứng x = −2. C. Đồ thị hàm số nhận I(1;-2) làm đỉnh. D. Hàm số tăng trên khoảng(1;+∞).
Đề kiểm tra lớp 10 môn Toán năm học 2019 2020 trường THPT Đống Đa Hà Nội
Nội dung Đề kiểm tra lớp 10 môn Toán năm học 2019 2020 trường THPT Đống Đa Hà Nội Bản PDF Sytu giới thiệu đến quý thầy, cô cùng các em học sinh đề kiểm tra giữa học kì 1 môn Toán lớp 10 năm học 2019 – 2020 trường THPT Đống Đa – Hà Nội, đề gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 60 phút. Trích dẫn đề kiểm tra Toán lớp 10 năm học 2019 – 2020 trường THPT Đống Đa – Hà Nội : + Xét tính chẵn lẻ của hàm số y = 2x^3 – 3x. + Tìm m sao cho hàm số sau là hàm số chẵn: y = x^4 – 3x^2 + (m – 2)x + 4m – 1. + Cho tam giác ABC với trọng tâm G. a) Chứng minh rằng với mọi điểm D bất kì ta luôn có AC + DA + BD = AD – CD + BA. b) Tìm tập hợp các điểm M thỏa mãn |AB + MA| = |AB – AC|. c) Gọi I là điểm đối xứng với A qua B, đường thẳng IG cắt AC tại E. Tính tỉ số EA/EC.