Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 lần 2 năm 2022 trường THCS Quỳnh Mai Hà Nội

Nội dung Đề thi thử Toán vào 10 lần 2 năm 2022 trường THCS Quỳnh Mai Hà Nội Bản PDF - Nội dung bài viết Đề thi thử Toán vào 10 lần 2 năm 2022 trường THCS Quỳnh Mai Hà Nội Đề thi thử Toán vào 10 lần 2 năm 2022 trường THCS Quỳnh Mai Hà Nội Chào đón quý thầy cô và các em học sinh lớp 9! Sytu xin giới thiệu đến mọi người đề thi thử môn Toán lớp 9, ôn tập cho kỳ thi tuyển sinh vào lớp 10 THPT lần 2 năm học 2021 - 2022 của trường THCS Quỳnh Mai, thuộc quận Hai Bà Trưng, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào ngày 07 tháng 05 năm 2022, với đề thi kèm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Dưới đây là một số câu hỏi mẫu trong đề thi: Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Cho một số có hai chữ số. Biết rằng tổng của các chữ số hàng chục và hai lần chữ số hàng đơn vị là 12. Nếu đổi chỗ hai chữ số cho nhau thì sẽ được một số mới lớn hơn số ban đầu 27 đơn vị. Tìm số ban đầu. Một bình nước có dạng hình nón, đường kính đáy là 10dm, chiều dài đường sinh là 13dm. Hỏi bình đựng nước này có thể chứa bao nhiêu lít nước? (Bỏ qua bề dày của bình nước và lấy pi = 3,14). Câu hỏi về đường tròn và góc: Cho bán kính và đường kính của nửa đường tròn. Từ các thông số này, hãy chứng minh và giải quyết các vấn đề liên quan đến góc và tiếp tuyến trên nửa đường tròn. Hy vọng rằng đề thi thử này sẽ giúp các em chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em học tập tốt và đạt kết quả cao! Cảm ơn quý thầy cô đã dành thời gian quan tâm và hỗ trợ cho sự phát triển của các em học sinh.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Quảng Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đáp án, lời giải chi tiết và hướng dẫn chấm điểm đề tuyển sinh lớp 10 môn Toán năm học 2021 – 2022 sở GD&ĐT Quảng Bình; kỳ thi được diễn ra vào ngày 08 tháng 06 năm 2021. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Quảng Bình : + Cho đường tròn O R đường kính AB, dây cung MN vuông góc với AB tại I sao cho AI BI. Trên đoạn thẳng MI lấy điểm H (H khác M và I), tia AH cắt đường tròn O R tại điểm thứ hai là K. Chứng minh rằng: a) Tứ giác BIHK nội tiếp đường tròn. b) AHM đồng dạng với AMK. c) 2 AH AK BI AB R. + Cho phương trình 2 x x m 6 4 0 1 (với m là tham số). a) Giải phương trình (1) khi m = 1. b) Tìm tất cả các giá trị của m để phương trình (1) có hai nghiệm 1 2 x x thỏa mãn 2020 2021 2014 x x x x 1 2 1 2. + Cho a b là các số thực dương. Chứng minh 1 15 15 4.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 - 2022 trường PTNK - TP HCM
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đáp án, lời giải chi tiết và hướng dẫn chấm điểm đề tuyển sinh lớp 10 môn Toán (chuyên) năm học 2021 – 2022 trường Phổ thông Năng khiếu, Đại học Quốc gia thành phố Hồ Chí Minh. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 – 2022 trường PTNK – TP HCM : + Cho tam giác ABC vuông tại A. Các điểm E, F lần lượt thay đổi trên các cạnh AB, AC sao cho EF // BC. Gọi D là giao điểm của BF với CE và H là hình chiếu vuông góc của D lên EF. Đường tròn (I) đường kính EF cắt BF, CE tương ứng tại M, N (M khác F, N khác E). a) Chứng minh rằng AD và đường tròn ngoại tiếp tam giác HMN cùng đi qua tâm I của đường tròn (I). b) Gọi KL lần lượt là hình chiếu vuông góc của E, F lên BC và P, Q tương ứng là giao điểm của EM, FN với BC. Chứng minh các tứ giác AEPL, AFQK nội tiếp và không đổi khi E, F thay đổi. c) Chứng minh rằng nếu EL và FK cắt nhau trên đường tròn (I) thì EM và FN cắt nhau trên đường thẳng BC. + Cho N tập hợp (N > 6), mỗi tập hợp gồm 5 chữ cái khác nhau được lấy từ 26 chữ cái a, b, c, …, x, y, z. a) Biết rằng trong N tập hợp đã cho, hai tập hợp bất kỳ có chung đúng một chữ cái và không có chữ cái nào có mặt trong tất cả N tập hợp này. Chứng minh rằng không có chữ cái nào có mặt trong 6 tập hợp từ N tập hợp đã cho. b) Biết rằng trong số N tập hợp đã cho, hai tập hợp bất kỳ có chung đúng hai chữ cái và không có hai chữ cái nào cũng có mặt trong tất cả N tập hợp này. Hỏi trong số N tập hợp đã cho, có nhiều nhất là bao nhiêu tập hợp có chung đúng hai chữ cái?
Đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2021 - 2022 trường PTNK - TP HCM
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đáp án, lời giải chi tiết và hướng dẫn chấm điểm đề tuyển sinh lớp 10 môn Toán (không chuyên) năm học 2021 – 2022 trường Phổ thông Năng khiếu, Đại học Quốc gia thành phố Hồ Chí Minh. Trích dẫn đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2021 – 2022 trường PTNK – TP HCM : + Gọi (P), (d) lần lượt là đồ thị của hàm số y = x2 và y = 2x + m. a) Tìm m sao cho (P) cắt (d) tại hai điểm phân biệt A(x1;y1); B(x2;y2). b) Tìm m sao cho (x1 – x2)2 + (y1 – y2)2 = 5. + Công ty viễn thông X có hai gói cước gọi điện hàng tháng được tính như sau: Gói I: 1.800 đồng/phút cho 60 phút đầu tiên, 1.500 đồng/phút cho 60 phút tiếp theo và 1.000 đồng/phút cho thời gian còn lại. Gói II: 2.000 đồng/phút cho 30 phút đầu tiên, 1.800 đồng/phút cho 30 phút tiếp theo, 1.200 đồng/phút cho 30 phút tiếp theo nữa và 800 đồng/phút cho thời gian còn lại. Sau khi cân nhắc thời gian gọi trung bình mỗi tháng, bác An chọn gói cước II vì so với gói cước I bác An sẽ tiết kiệm được 95.000 đồng. Hỏi một tháng trung bình bác An gọi bao nhiêu phút? + Tam giác ABC có AB = 3cm, AC = 4cm và BC = 5cm. Vẽ phân giác BD của góc ABC (D thuộc cạnh AC). Tính độ dài BD.
Đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 trường ĐHSP Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 trường ĐHSP Hà Nội; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 trường ĐHSP Hà Nội : + Một tấm biển quảng cáo có dạng hình tròn tâm O, bán kính bằng 1,6m. Giả sử hình chữ nhật ABCD nội tiếp đường tròn tâm O bán kính bằng 1,6m sao cho BOC 45 (hình bên). Người ta cần sơn màu toàn bộ tấm biển quảng cáo và chỉ sơn một mặt như ở hình bên. Biết mức chi phí sơn phần hình tô đậm là 150 nghìn đồng/ 2m và phần còn lại là 200 nghìn đồng/ 2m. Hỏi số tiền (làm tròn đến đơn vị nghìn đồng) để sơn toàn bộ biển quảng cáo bằng bao nhiêu? Cho pi = 3,14. + Cho ba điểm A, B, C cố định sao cho A, B, C thẳng hàng, B nằm giữa A và C. Gọi d là đường thẳng đi qua C và vuông góc với AB. Lấy điểm M tùy ý trên d. Đường thẳng đi qua B và vuông góc với AM cắt các đường thẳng AM, d lần lượt tại I, N. Đường thẳng MB cắt AN tại K. a) Chứng minh rằng tứ giác MIKN nội tiếp. b) Chứng minh rằng CM CN AC BC. c) Gọi O là tâm của đường tròn ngoại tiếp tam giác AMN. Vẽ hình bình hành MBNE. Gọi H là trung điểm của đoạn thẳng BE. Chứng minh rằng OH vuông góc với đường thẳng d và 1 2 OH AB. + Cho a và b là hai số hữu tỉ. Chứng minh rằng nếu a b 2 3 cũng là số hữu tỉ thì a b 0.