Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử vào 10 năm 2020 2021 môn Toán trường Gang Thép Thái Nguyên

Nội dung Đề thi thử vào 10 năm 2020 2021 môn Toán trường Gang Thép Thái Nguyên Bản PDF - Nội dung bài viết Đề thi thử vào 10 năm 2020-2021 môn Toán trường Gang Thép Thái Nguyên Đề thi thử vào 10 năm 2020-2021 môn Toán trường Gang Thép Thái Nguyên Sytu xin giới thiệu đến quý thầy cô và các em học sinh đề thi thử tuyển sinh vào lớp 10 THPT năm học 2020-2021 môn Toán trường THPT Gang Thép, tỉnh Thái Nguyên. Đề thi bao gồm 01 trang với 10 bài toán dạng tự luận, thời gian làm bài thi là 120 phút, và có đáp án chi tiết. Dưới đây là một số câu hỏi từ đề thi thử: Trên một vùng biển phẳng, vào lúc 6 giờ có một tàu cá và một tàu du lịch đi qua điểm X theo hướng và tốc độ khác nhau. Đến 8 giờ, khoảng cách giữa hai tàu là 60 km. Hãy tính vận tốc của mỗi tàu. Cho hai đường tròn tiếp xúc ngoài tại E. Vẽ tiếp tuyến chung ngoài MN của hai đường tròn và tiếp tuyến chung trong của hai đường tròn tại E cắt MN tại A. Hãy chứng minh tứ giác MAEO1 và NAEO2 là các tứ giác nội tiếp và tính độ dài MN theo bán kính của hai đường tròn. Cho tam giác nhọn ABC (AB < AC). Đường tròn tâm O đường kính BC cắt cạnh AC, AB lần lượt tại D và E. H là giao điểm của BD và CE. K là giao điểm của DE và AH. F là giao điểm của AH và BC. M là trung điểm của AH. Chứng minh rằng MA2 = MK.MF. Đây là một số câu hỏi thú vị, đa dạng và phong phú từ đề thi thử vào lớp 10 môn Toán của trường THPT Gang Thép Thái Nguyên. Chúc các em học sinh ôn tập tốt và đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 THPT năm 2018 - 2019 môn Toán sở GD và ĐT Ninh Bình
Đề tuyển sinh lớp 10 THPT năm 2018 – 2019 môn Toán sở GD và ĐT Ninh Bình gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 120 phút, nội dung kiến thức các câu hỏi trong đề gồm: rút gọn biểu thức, giải hệ phương trình, tìm giá trị của tham số để đồ thị hàm bậc nhất y = ax + b đi qua điểm cho trước, giải và biện luận phương trình bậc hai, giải toán bằng cách lập phương trình hoặc hệ phương trình, bài toán đường tròn, tìm giá trị nhỏ nhất, lớn nhất của biểu thức 2 biến. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2018 – 2019 môn Toán sở Ninh Bình : + Một hình chữ nhật có chu vi bằng 28 cm. Tính chiều dài và chiều rộng của chữ nhật, biết rằng nếu tăng chiều dài thêm 1 cm và tăng chiều rộng thêm 2 cm thì diện tích hình chữ nhật đó tăng thêm 25 cm2. [ads] + Cho phương trình x^2 – mx + m – 4 = 0 (1), (x là ẩn số và m là tham số). a. Giải phương trình (1) khi m = 8. b. Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt x1 và x2 với mọi m. Tìm tất cả các giá trị nguyên dương của m để (5×1 – 1)(5×2 – 1) < 0.
Đề tuyển sinh vào lớp 10 THPT môn Toán năm 2018 - 2019 sở GD và ĐT Quảng Ninh
Đề tuyển sinh vào lớp 10 THPT môn Toán năm 2018 – 2019 sở GD và ĐT Quảng Ninh được biên soạn nhằm đánh giá, phân loại năng lực học Toán của các em học sinh khối lớp 9, để từ đó các trường THPT tại tỉnh Quảng Ninh có thể tuyển sinh khối 10 cho năm học mới theo tiêu chí của mỗi trường, đề gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 120 phút (không tính thời gian giao đề). Trích dẫn đề tuyển sinh vào lớp 10 THPT môn Toán 2018 – 2019 sở Quảng Ninh : + Một xe ô tô đi từ A đến B theo đường quốc lộ cũ dài 156 km với vận tốc không đổi. Khi từ B trở về A, xe đi đường cao tốc mới nên quãng đường giảm được 36 km so với lúc đi và vận tốc tăng so với lúc đi là 36 km/h. Tính vận tốc ô tô khi đi từ A đến B, biết thời gian đi nhiều hơn thời gian về là 1 giờ 45 phút. [ads] + Xác định các hệ số a, b để đồ thị của hàm số y = ax + b đi qua hai điểm A(2;-2)  và B(-3;2). + Tìm giá trị của m để phương trình x^2 – 2(m + 1)x + m^2 + 3 = 0 có hai nghiệm x1, x2 thỏa mãn |x1| + |x2| = 0.
Đề tuyển sinh lớp 10 môn Toán 2018 - 2019 trường PTNK - TP. HCM (không chuyên)
Đề tuyển sinh lớp 10 môn Toán 2018 – 2019 trường PTNK – TP. HCM (không chuyên) được biên soạn và tổ chức thi ngày 26/05/2018 nhằm giúp tuyển chọn các em học sinh khối 10 đạt chỉ tiêu về năng lực vào trường Phổ Thông Năng Khiếu, Đại học Quốc gia TP. HCM để chuẩn bị cho năm học 2018 – 2019, đề thi gồm 1 trang với 5 bài toán tự luận, thí sinh làm bài trong 120 phút, đề thi có lời giải chi tiết . Trích dẫn đề tuyển sinh lớp 10 môn Toán 2018 – 2019 trường PTNK – TP. HCM : + Cho phương trình x^2 – x + 3m – 11 = 0 (1). a) Với giá trị nào của m thì phương trình (1) có nghiệm kép. Tìm nghiệm kép đó. b) Tìm m để phương trình (1) có hai nghiệm phân biệt x1, x2 sao cho 2017×1 + 2018×2 = 2019. [ads] + Tứ giác ABCD nội tiếp đường tròn (T) tâm O, bán kính R; góc CAD = 45 độ, AC vuông góc với BD và cắt BD tại I, AD > BC. Dựng CK vuông góc với AD (K ∈ AD), CK cắt BD tại H và cắt (T) tại E (E ≠ C). a) Tính số đo góc COD. Chứng minh các điểm C, I, K, D cùng thuộc một đường tròn và AC = BD. b) Chứng minh A là tâm đường tròn ngoại tiếp tam giác BHE. Tính IK theo R. c) IK cắt AB tại F. Chứng minh O là trực tâm tam giác AIK và CK.CB = CF.CD.
Đề tuyển sinh vào lớp 10 THPT chuyên 2018 - 2019 sở GD và ĐT Hưng Yên
Đề tuyển sinh vào lớp 10 THPT chuyên 2018 – 2019 sở GD và ĐT Hưng Yên được biên soạn và tổ chức thi nhằm giúp tuyển chọn các em học sinh khá, giỏi vào học tại các trường THPT chuyên tại tỉnh Hưng Yên trong năm học 2018 – 2019, đề gồm 6 bài toán tự luận, thời gian làm bài 120 phút, đề thi có lời giải chi tiết . Trích dẫn đề tuyển sinh vào lớp 10 THPT chuyên 2018 – 2019 sở Hưng Yên : + Quảng đường AB dài 120 km. Một ô tô chạy từ A đến B với vận tốc xác định. Khi từ B trở về A, ô tô chạy với vận tốc nhỏ hơn vận tốc lúc đi từ A đến B là 10 km/h. Tính vận tốc lúc về của ô tô, biết thời gian về nhiều hơn thời gian đi 24 phút. [ads] + Tìm m để đường thẳng y = x + m^2 + 2 và đường thẳng y = (m – 2)x + 11 cắt nhau tại một điểm trên trục tung. + Tìm m để phương trình x^4 + 5x^2 + 6 – m = 0 (m là tham số) có đúng hai nghiệm.