Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển lớp 7 môn Toán năm 2022 2023 hệ thống GD Archimedes School Hà Nội

Nội dung Đề chọn đội tuyển lớp 7 môn Toán năm 2022 2023 hệ thống GD Archimedes School Hà Nội Bản PDF - Nội dung bài viết Đề thi chọn đội tuyển Toán lớp 7 năm 2022 - 2023 Archimedes School Hà Nội Đề thi chọn đội tuyển Toán lớp 7 năm 2022 - 2023 Archimedes School Hà Nội Xin chào quý thầy cô và các em học sinh lớp 7! Đây là đề thi chọn đội tuyển học sinh giỏi môn Toán lớp 7 năm học 2022 - 2023 của hệ thống giáo dục Archimedes School, thành phố Hà Nội. Đề thi bao gồm 01 trang với 07 bài toán dạng tự luận, thời gian làm bài thi là 135 phút. Một trong những bài toán trong đề thi là: Có 64 học sinh đứng trên một lưới ô vuông kích thước 8 x 8, mỗi ô vuông có đúng một học sinh đứng trên đó và toàn bộ 64 học sinh đều có chiều cao khác nhau. Biết rằng An là người cao nhất trong những người thấp nhất ở mỗi hàng và Bình là người thấp nhất trong những người cao nhất ở mỗi cột, hãy so sánh chiều cao của An và Bình. Bên cạnh đó, đề thi còn đề cập đến bài toán khác như tính giá trị của biểu thức S với số nguyên dương n, và thách thức của Thầy Cẩn khi muốn viết các số vào các đỉnh của một khối lập phương sao cho tổng hai số trên hai đầu mút của mỗi cạnh là đôi một khác nhau. Đây là cơ hội để các em học sinh lớp 7 thể hiện khả năng giải toán, logic và sự sáng tạo của mình. Chúc các em thành công trong việc giải quyết các bài toán thú vị này!

Nguồn: sytu.vn

Đọc Sách

Đề thi thử HSG lần 2 Toán 7 năm 2022 - 2023 phòng GDĐT Hiệp Hòa - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi thử học sinh giỏi cấp huyện lần 2 môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Hiệp Hòa, tỉnh Bắc Giang; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử HSG lần 2 Toán 7 năm 2022 – 2023 phòng GD&ĐT Hiệp Hòa – Bắc Giang : + Cho tam giác ABC có M là trung điểm của cạnh BC. Trên tia đối của tia MA lấy điểm E sao cho ME MA. a) Chứng minh AC BE. b) Gọi I là một điểm trên đoạn thẳng AC, K là một điểm trên đoạn thẳng EB sao cho AI EK. Chứng minh ba điểm I, M, K thẳng hàng. 2) Cho tam giác ABC cân tại A có 0 BAC 20. Vẽ tam giác đều BCD sao cho điểm D nằm trong tam giác ABC. Tia phân giác của ABD cắt AC tại M. Chứng minh AM BC. + Tìm số nguyên a để 2 a a 3 chia hết cho a + 1. + Tìm các số nguyên tố x, y thỏa mãn 2 2 x y 2 1.
Đề thi học sinh giỏi Toán 7 năm 2021 - 2022 phòng GDĐT Hương Trà - TT Huế
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp thị xã môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo Hương Trà, tỉnh Thừa Thiên Huế. Trích dẫn đề thi học sinh giỏi Toán 7 năm 2021 – 2022 phòng GD&ĐT Hương Trà – TT Huế : + Tìm độ dài ba cạnh của tam giác có chu vi bằng 13cm. Biết độ dài ba đường cao tương ứng lần lượt là 2cm, 3cm, 4cm. + Cho tam giác ABC có góc B và góc C nhỏ hơn 90°, kẻ đường cao AH (H thuộc BC). Vẽ ra phía ngoài tam giác ấy các tam giác vuông cân ABD và ACE (trong đó góc ABD và góc ACE đều bằng 90°), vẽ DI và EK cùng vuông góc với đường thẳng BC. Chứng minh rằng: a) BI = CK; EK = HC. b) BC = DI + EK. + Tìm giá trị lớn nhất của biểu thức: P. Khi đó x nhận giá trị nguyên nào?
Đề thi Olympic Toán 7 năm 2021 - 2022 phòng GDĐT Đức Thọ - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Đức Thọ, tỉnh Hà Tĩnh; kỳ thi được diễn ra vào ngày 08 tháng 04 năm 2022. Trích dẫn đề thi Olympic Toán 7 năm 2021 – 2022 phòng GD&ĐT Đức Thọ – Hà Tĩnh : + Biết trung bình cộng của 16 số bằng 4. Thêm vào số thứ mười bảy thì trung bình cộng của chúng bằng 5. Tìm số thứ mười bảy? + Một vật chuyển động trên các cạnh hình vuông. Trên hai cạnh đầu vật chuyển động với vận tốc 5 m/s trên cạnh thứ ba với vận tốc 4 m/s, trên cạnh thứ tư với vận tốc 3 m/s. Hỏi độ dài cạnh hình vuông biết rằng tổng thời gian vật chuyển động trên 4 cạnh là 59 giây. + Cho tam giác ABC vuông cân tại A; M là trung điểm của cạnh BC. Lấy điểm D bất kỳ thuộc đoạn thẳng BM. Kẻ BH vuông góc với AD (H thuộc AD), CI vuông góc với AD (I thuộc AD). Đường thẳng AM cắt CI tại N. Chứng minh rằng: a) DN vuông góc với AC. b) ΔΑΗΒ = ΔCIA. c) IM là tia phân giác của góc CID.
Đề thi Olympic Toán 7 năm 2021 - 2022 phòng GDĐT Nghĩa Đàn - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Nghĩa Đàn, tỉnh Nghệ An.