Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi KSCL lần 3 Toán 12 năm 2018 - 2019 trường Triệu Thái - Vĩnh Phúc

Vừa qua, trường THPT Triệu Thái (Lập Thạch, Vĩnh Phúc) đã tổ chức kỳ thi khảo sát chất lượng lần 3 môn Toán 12 năm học 2018 – 2019, kỳ thi nhằm tạo điều kiện để các em học sinh khối 12 của nhà trường được tiếp tục rèn luyện và củng cố các kiến thức Toán THPT, để các em có sự chuẩn bị tốt nhất cho kỳ thi THPT Quốc gia môn Toán năm 2019. Đề thi KSCL lần 3 Toán 12 năm 2018 – 2019 trường Triệu Thái – Vĩnh Phúc có mã đề 132 gồm 06 trang, đề được soạn theo dạng đề trắc nghiệm với 50 câu hỏi và bài tập, học sinh làm bài thi KSCL Toán 12 trong thời gian 90 phút. [ads] Trích dẫn đề thi KSCL lần 3 Toán 12 năm 2018 – 2019 trường Triệu Thái – Vĩnh Phúc : + Mảnh vườn nhà ông An có dạng hình elip với bốn đỉnh A1, A2, B1, B2 như hình vẽ bên. Ông dùng 2 đường Parabol có đỉnh là tâm đối xứng của elip cắt elip tại 4 điểm M, N, P, Q như hình vẽ sao cho tứ giác MNPQ là hình chữ nhật có MN = 4 để chia vườn. Phần tô đậm dùng để trồng hoa và phần còn lại để trồng rau. Biết chi phí trồng hoa là 600.000 đồng/m2 và trồng rau là 50.000 đồng/m2. Hỏi số tiền phải chi gần nhất với số tiền nào dưới đây, biết A1A2 = 8m, B1B2 = 4m. + Trong kỳ thi chọn học sinh giỏi tỉnh Vĩnh Phúc có 105 em dự thi, có 10 em tham gia buổi gặp mặt trước kỳ thi. Biết các em đó có số thứ tự trong danh sách lập thành một cấp số cộng. Các em ngồi ngẫu nhiên vào hai dãy bàn đối diện nhau, mỗi dãy có 5 ghế và mỗi ghế chỉ ngồi được 1 học sinh. Tính xác suất để tổng các số thứ tự của hai em ngồi đối diện nhau là bằng nhau. + Một vật chuyển động theo quy luật s = -1/3.t^3 + 6.t^2 với t ( giây) là khoảng thời gian tính từ khi vật bắt đầu chuyển động và s (mét) là quãng đường vật di chuyển được trong khoảng thời gian đó. Hỏi trong khoảng thời gian 9 giây, kể từ khi vật bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu?

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát chất lượng lần 1 lớp 12 môn Toán năm 2020 2021 trường Quế Võ 1 Bắc Ninh
Nội dung Đề khảo sát chất lượng lần 1 lớp 12 môn Toán năm 2020 2021 trường Quế Võ 1 Bắc Ninh Bản PDF Đề khảo sát chất lượng lần 1 Toán lớp 12 năm 2020 – 2021 trường Quế Võ 1 – Bắc Ninh mã đề 101 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 101, 239, 353, 477, 593, 615, 737, 859, 971, 193, 275, 397. Trích dẫn đề khảo sát chất lượng lần 1 Toán lớp 12 năm 2020 – 2021 trường Quế Võ 1 – Bắc Ninh : + Cho hàm số f(x) liên tục trên R và hàm số f'(x) có bảng biến thiên như sau. Tìm mệnh đề đúng? A. Hàm số y = f(x) có 2 điểm cực tiểu và 1 điểm cực đại. B. Hàm số y = f(x) có 1 điểm cực tiểuvà 1 điểm cực đại. C. Hàm số không có giá trị lớn nhất và không có giá trị nhỏ nhất. D. Hàm số y = f(x) có 1 điểm cực tiểu và 2 điểm cực đại. + Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn x^2 + y^2 – 2x – 4y – 11 = 0. Tìm bán kính của đường tròn (C’) là ảnh của đường tròn (C) qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép vị tự tâm O tỉ số k = −2020 và phép tịnh tiến theo véctơ v = (2019;2020) là? + Cho một hình nón đỉnh S có độ dài đường sinh bằng 10cm, bán kính đáy bằng 6cm. Cắt hình nón đã cho bởi một mặt phẳng song song với mặt phẳng chứa đáy được một hình nón (N) đỉnh S có chiều cao bằng 16/5 cm. Tính diện tích xung quay của khối nón (N). File WORD (dành cho quý thầy, cô):
Đề khảo sát chất lượng lớp 12 môn Toán lần 1 năm 2020 2021 trường THPT chuyên Hưng Yên
Nội dung Đề khảo sát chất lượng lớp 12 môn Toán lần 1 năm 2020 2021 trường THPT chuyên Hưng Yên Bản PDF Ngày … tháng 12 năm 2020, trường THPT chuyên Hưng Yên, tỉnh Hưng Yên tổ chức kỳ thi kiểm tra đánh giá chất lượng lớp 12 môn Toán năm học 2020 – 2021 lần thứ nhất. Đề khảo sát chất lượng Toán lớp 12 lần 1 năm 2020 – 2021 trường THPT chuyên Hưng Yên được biên soạn theo dạng đề trắc nghiệm, đề gồm 06 trang với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề). Trích dẫn đề khảo sát chất lượng Toán lớp 12 lần 1 năm 2020 – 2021 trường THPT chuyên Hưng Yên : + Một loại thuốc được dùng cho một bệnh nhân và nồng độ thuốc trong máu của bệnh nhân được giám sát bởi bác sĩ. Biết rằng nồng độ thuốc trong máu của bệnh nhân sau khi tiêm vào cơ thể trong t giờ được cho bởi công thức c(t) = t/(t^2 + 1) (mg / L). Sau khi tiêm thuốc bao lâu thì nồng độ thuốc trong máu của bệnh nhân cao nhất? + Gọi d là đường thẳng đi qua A(2;0) có hệ số góc m (m > 0) cắt đồ thị (C): y = -x^3 + 6x^2 – 9x + 2 tại ba điểm phân biệt A, B, C. Gọi B’, C’ lần lượt là hình chiếu vuông góc của B, C lên trục tung. Biết rằng hình thang BB’C’C có diện tích bằng 8, giá trị của m thuộc khoảng nào sau đây? + Cho một đa giác đều có 18 đỉnh nội tiếp đường tròn tâm O. Gọi X là tập hợp tất cả các tam giác có 3 đỉnh trùng với 3 trong số 18 đỉnh của đa giác đã cho. Chọn 1 tam giác trong tập hợp X. Xác suất để tam giác được chọn là tam giác cân bằng?
Đề khảo sát lớp 12 môn Toán lần 3 năm 2018 2019 trường THPT Lê Lai Thanh Hóa
Nội dung Đề khảo sát lớp 12 môn Toán lần 3 năm 2018 2019 trường THPT Lê Lai Thanh Hóa Bản PDF Nhằm kiểm tra đánh giá chất lượng học tập môn Toán của học sinh khối 12 trong quá trình ôn tập hướng đến kỳ thi THPT Quốc gia môn Toán năm 2019, vừa qua, trường THPT Lê Lai, tỉnh Thanh Hóa đã tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 12 năm học 2018 – 2019 lần thứ ba. Đề khảo sát Toán lớp 12 lần 3 năm 2018 – 2019 trường THPT Lê Lai – Thanh Hóa có mã đề 001, đề được biên soạn với hình thức và cấu trúc đề tương tự với đề minh họa THPT Quốc gia môn Toán năm 2019 do Bộ GD&ĐT công bố, đề gồm 06 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, học sinh làm bài trong khoảng thời gian 90 phút, đề thi có đáp án và lời giải chi tiết. [ads] Trích dẫn đề khảo sát Toán lớp 12 lần 3 năm 2018 – 2019 trường THPT Lê Lai – Thanh Hóa : + Trên bức tường cần trang trí một hình phẳng dạng parabol đỉnh S như hình vẽ, biết OS = AB = 4m, O là trung điểm AB. Parabol trên được chia thành ba phần để sơn ba màu khác nhau với mức chi phí: phần kẻ sọc giá 140000 đồng/m2, phần được tô đậm là hình quạt tâm O, bán kính 2m giá 150000 đồng/m2, phần còn lại giá 160000 đồng/m2. Tổng chi phí để sơn cả 3 phần gần nhất với số nào sau đây? + Hình trụ bán kính đáy r. Gọi O và O′ là tâm của hai đường tròn đáy với OO’ = 2r. Một mặt cầu tiếp xúc với hai đáy của hình trụ tại O và O′. Gọi VC và VT lần lượt là thể tích của khối cầu và khối trụ. Khi đó VC/VT bằng? + Cho tam giác ABC vuông tại A. Khi quay tam giác ABC quanh cạnh AB thì hình tròn xoay được tạo thành là: A. hình trụ. B. hình nón. C. hình nón cụt. D. hình cầu. File WORD (dành cho quý thầy, cô):
Đề kiểm tra lớp 12 môn Toán năm 2018 – 2019 lần 4 trường Ninh Bình – Bạc Liêu – Ninh Bình
Nội dung Đề kiểm tra lớp 12 môn Toán năm 2018 – 2019 lần 4 trường Ninh Bình – Bạc Liêu – Ninh Bình Bản PDF Sytu giới thiệu đến các em học sinh lớp 12 đề kiểm tra Toán lớp 12 năm 2018 – 2019 lần 4 trường Ninh Bình – Bạc Liêu – Ninh Bình, nhằm giúp các em có thêm đề thi chất lượng, chuẩn cấu trúc, để ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán do Bộ Giáo dục và Đào tạo tổ chức. Đề kiểm tra Toán lớp 12 năm 2018 – 2019 lần 4 trường Ninh Bình – Bạc Liêu – Ninh Bình mã đề 131, đề gồm 06 trang với 50 câu hỏi và bài toán dạng trắc nghiệm với 4 đáp án để lựa chọn, học sinh có 90 phút để hoàn thành bài thi thử môn Toán, đề thi có đáp án. [ads] Trích dẫn đề kiểm tra Toán lớp 12 năm 2018 – 2019 lần 4 trường Ninh Bình – Bạc Liêu – Ninh Bình : + Sân vận động Sports Hub (Singapore) là nơi diễn ra lễ khai mạc Đại hội thể thao Đông Nam Á được tổ chức ở Singapore năm 2015. Nền sân là một elip (E) có trục lớn dài 150 m, trục bé dài 90 m (Hình 3). Nếu cắt sân vận động theo một mặt phẳng vuông góc với trục lớn của (E) và cắt elip (E) ở M, N (Hình a) thì ta được thiết diện luôn là một phần của hình tròn có tâm I (phần tô đậm trong Hình b) với MN là một dây cung và góc MIN = 90◦. Để lắp máy điều hòa không khí cho sân vận động thì các kỹ sư cần tính thể tích phần không gian bên dưới mái che và bên trên mặt sân, coi như mặt sân là một mặt phẳng và thể tích vật liệu làm mái không đáng kể. Hỏi thể tích đó xấp xỉ bao nhiêu? + Cho một quân cờ đứng ở vị trí trung tâm của một bàn cờ 9 × 9 (xem hình vẽ). Biết rằng, mỗi lần di chuyển, quân cờ chỉ di chuyển sang ô có cùng một cạnh với ô đang đứng. Tính xác suất để sau bốn lần di chuyển, quân cờ không trở về đúng vị trí ban đầu. + Trong không gian Oxyz cho mặt cầu (S) có phương trình x^2 + y^2 + z^2 − 4x + 2y − 2z − 3 = 0 và điểm A(5; 3;−2). Một đường thẳng d thay đổi luôn đi qua A và luôn cắt mặt cầu tại hai điểm phân biệt M, N. Tính giá trị nhỏ nhất của biểu thức S = AM + 4AN.