Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2021 2022 trường THPT Nguyễn Gia Thiều Hà Nội

Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2021 2022 trường THPT Nguyễn Gia Thiều Hà Nội Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán lớp 10 năm 2021 – 2022 trường THPT Nguyễn Gia Thiều – Hà Nội; đề thi gồm 08 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút (không kể thời gian phát đề). Trích dẫn đề thi học kì 1 Toán lớp 10 năm 2021 – 2022 trường THPT Nguyễn Gia Thiều – Hà Nội : + Trong các quy tắc sau, quy tắc nào không phải là một hàm số? A. Quy tắc đặt tương ứng mỗi số thực dương với căn bậc hai của nó. B. Quy tắc đặt tương ứng mỗi số thực với căn bậc ba của nó. C. Quy tắc đặt tương ứng mỗi số thực với bình phương của nó. D. Quy tắc đặt tương ứng mỗi số thực dương với giá trị tuyệt đối của nó. + Khi một quả bóng được đá lên, nó sẽ đạt đến độ cao nào đó rồi rơi xuống đất. Biết rằng quỹ đạo của quả bóng là một cung parabol trong mặt phẳng với hệ tọa độ Oxy, trong đó x là thời gian (tính bằng giây) kể từ khi quả bóng được đá lên; y là độ cao (tính bằng mét) của quả bóng. Giả thiết rằng quả bóng được đá từ độ cao 1,0m. Sau đó 1 giây, quả bóng đạt độ cao 3m và 2 giây sau khi đá lên, nó ở độ cao 4m (xem hình vẽ sau). Hỏi sau bao lâu thì quả bóng sẽ đạt được độ cao lớn nhất kể từ khi đá lên (tính chính xác đến hàng phần trăm)? + Xét lời giải bài toán sau khi giải phương trình. Thử lại ta thấy x = 2 không thỏa mãn phương trình đã cho. Vậy phương trình đã cho vô nghiệm. Hỏi lời giải trên đúng hay sai. Nếu sai thì sai ở bước nào? A. Lời giải đúng. B. Sai ở bước 2 C. Sai ở bước 3 D. Sai ở bước 1. + Cho tam giác ABC đều cạnh a và k là một số thực âm thay đổi. Tập hợp các điểm M thỏa mãn 31 k MA MB kMC O là A. Một đường tròn có bán kính bằng a. B. Một đoạn thẳng có độ dài bằng 2 a. C. Một đoạn thẳng có độ dài bằng 4 a. D. Một đoạn thẳng có độ dài bằng a. + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC vuông cân tại C. Biết điểm A B 2 4 6 4 và điểm C nằm phía trên trục hoành. Tính độ dài đoạn thẳng CO? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Hàn Thuyên TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Hàn Thuyên TP HCM Bản PDF Kỳ thi cuối học kì 1 môn Toán lớp 10 là kỳ thi rất quan trọng đối với các em học sinh lớp 10, điểm số của kỳ thi này tác động lớn đến điểm trung bình môn Toán lớp 10 nói riêng và xếp loại học lực nói chung. Để giúp các em đạt được điểm số cao trong kì thi HK1 Toán lớp 10 sắp tới, Sytu chọn lọc và chia sẻ đến các em bản PDF đề thi + đáp án/đáp số + lời giải chi tiết đề thi học kì 1 Toán lớp 10 năm học 2019 – 2020 trường THPT Hàn Thuyên, thành phố Hồ Chí Minh. Trích dẫn đề thi học kì 1 Toán lớp 10 năm 2019 – 2020 trường THPT Hàn Thuyên – TP HCM : + Trong mặt phẳng tọa độ Oxy cho ba điểm: A(1;3), B(5;1), C(4;–1). a) Chứng minh tam giác ABC vuông. b) Tìm tọa độ điểm D nằm trên trục hoành để ba điểm A, B, M thẳng hàng. c) Tìm tọa độ điểm H là chân đường cao kẻ từ đỉnh B của tam giác ABC. + Cho tam giác ABC có AB = 8, BC = 7, góc BAC = 60 độ. Tính độ dài cạnh AC. + Viết phương trình Parabol (P): y = ax2 + bx + c, biết (P) có đỉnh I(–2;–1) và cắt trục tung tại điểm có tung độ bằng 3.
Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Bùi Thị Xuân TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Bùi Thị Xuân TP HCM Bản PDF Kỳ thi cuối học kì 1 môn Toán lớp 10 là kỳ thi rất quan trọng đối với các em học sinh lớp 10, điểm số của kỳ thi này tác động lớn đến điểm trung bình môn Toán lớp 10 nói riêng và xếp loại học lực nói chung. Để giúp các em đạt được điểm số cao trong kì thi HK1 Toán lớp 10 sắp tới, Sytu chọn lọc và chia sẻ đến các em bản PDF đề thi + đáp án/đáp số + lời giải chi tiết đề thi học kì 1 Toán lớp 10 năm học 2019 – 2020 trường THPT Bùi Thị Xuân, thành phố Hồ Chí Minh. Trích dẫn đề thi học kì 1 Toán lớp 10 năm 2019 – 2020 trường THPT Bùi Thị Xuân – TP HCM : + Giải và biện luận phương trình sau theo tham số m: x(3m – 2) – m = m2.(x – 1). + Cho tam giác ABC, biết AB = 6(cm), AC = 8 (cm), BC = 12 (cm). a) Tính độ dài trung tuyến AI và độ dài đường cao AH của tam giác ABC. b) Trên cạnh AB lấy điểm M sao cho AM = 2(cm). Gọi N là trung điểm của cạnh AC. Tính AM.AN. + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có các đỉnh A(6;3), B(3;6) và C(1;-2). a) Tìm tọa độ điểm D sao cho ABCD là hình bình hành. b) Tìm tọa độ điểm E sao cho tam giác ABE vuông cân tại A.
Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Phú Lâm TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Phú Lâm TP HCM Bản PDF Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán lớp 10, Sytu sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán lớp 10 năm học 2019 – 2020 trường THPT Phú Lâm, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán lớp 10 năm 2019 – 2020 trường THPT Phú Lâm – TP HCM : + Trong mặt phẳng (Oxy) cho ba điểm A(-1;2), B(-1;-1), C(4;-1). a) Chứng minh rằng tam giác ABC vuông tại B. b) Tính diện tích của tam giác ABC. c) Tìm tọa độ trọng tâm G của tam giác ABC. + Cho phương trình mx^2 – (2m + 1)x + m – 4 = 0. Tìm m để phương trình có hai nghiệm phân biệt x1, x2 sao cho x1^2 + x2^2 = 15. + Cho hình vuông ABCD có cạnh bằng 2a. Hãy tính AC.AD.
Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Nguyễn Thị Minh Khai TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Nguyễn Thị Minh Khai TP HCM Bản PDF Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán lớp 10, Sytu sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán lớp 10 năm học 2019 – 2020 trường THPT Nguyễn Thị Minh Khai, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán lớp 10 năm 2019 – 2020 trường THPT Nguyễn Thị Minh Khai – TP HCM : + Giải các phương trình và hệ phương trình sau. + Tìm giá trị tham số m sao cho phương trình 9m^2.x – 1 = x – 3m có nghiệm tùy ý. + Tìm giá trị nhỏ nhất của hàm số y = 9x + (3x + 1)/(x – 1) với x > 1.