Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 9 môn Toán năm 2019 2020 trường THPT chuyên Hà Nội Amsterdam

Nội dung Đề thi học kì 1 (HK1) lớp 9 môn Toán năm 2019 2020 trường THPT chuyên Hà Nội Amsterdam Bản PDF - Nội dung bài viết Đề thi học kì 1 (HK1) lớp 9 môn Toán năm 2019-2020 trường THPT chuyên Hà Nội Amsterdam Đề thi học kì 1 (HK1) lớp 9 môn Toán năm 2019-2020 trường THPT chuyên Hà Nội Amsterdam Chào quý thầy cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi học kì 1 môn Toán lớp 9 năm học 2019-2020 của trường THPT chuyên Hà Nội - Amsterdam. Đề thi bao gồm 05 bài toán tự luận, trong đó có 04 bài toán chung cho tất cả học sinh và một bài toán riêng dành cho lớp chọn. Thời gian làm bài thi là 90 phút. Trích dẫn đề thi Toán lớp 9 HK1 năm học 2019-2020 của trường THPT chuyên Hà Nội - Amsterdam: + Bài 1: Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thẳng (d): y = x + 6 và (dm): y = (m^2 - 3m + 3)x + m^2 + m (với m là tham số). 1. Tìm giá trị của m để đường thẳng (dm) đi qua điểm M(-1;1). 2. Tìm giá trị của m để đường thẳng (dm) song song với đường thẳng (d). Sau đó, tính khoảng cách giữa hai đường thẳng (dm) và (d). + Bài 2: Từ điểm A nằm ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến (O) với B, C là các tiếp điểm. 1. Chứng minh rằng bốn điểm A, B, O, C cùng thuộc một đường tròn. 2. Gọi H là giao điểm của AD và BC. Chứng minh rằng OH.OA = OE^2. 3. Đường thẳng qua O vuông góc với EF cắt BC tại E. Chứng minh rằng SF là tiếp tuyến của đường tròn (O). 4. Đường thẳng SF cắt các đường thẳng AB và AC tương ứng tại P và Q. Đường thẳng OF cắt BC tại K. Chứng minh rằng AK đi qua trung điểm của PQ. Dưới đây là một số nội dung của đề thi HK1 Toán lớp 9 năm 2019-2020 trường THPT chuyên Hà Nội - Amsterdam. Chúc các em học tốt và thành công trong kì thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề cuối học kì 1 Toán 9 năm 2023 - 2024 phòng GDĐT thành phố Huế
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra định kì cuối học kì 1 môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Huế, tỉnh Thừa Thiên Huế. Trích dẫn Đề cuối học kì 1 Toán 9 năm 2023 – 2024 phòng GD&ĐT thành phố Huế : + Cặp số (-2; 1) là nghiệm của phương trình nào trong các phương trình bậc nhất hai ẩn sau: 3x + 2y = -4; -2x + 3y = 5; 0x – 4y = -4. Xác định hệ số a và xét xem hàm số nào đồng biến, hàm số nào nghịch biến trong các hàm số bậc nhất sau: y = 3x + 2; y = 2 – 4x; y = 2(3 – x) + 3x. + Một người quan sát đứng cách một tòa nhà khoảng 9m (điểm C). Góc nâng từ mắt người quan sát (điểm D) đến nóc tòa nhà (điểm A) là 49. Tính chiều cao AH của tòa nhà (làm tròn đến mét), biết chiều cao tính từ chân đến mắt người quan sát là 1,5m. + Cho nửa đường tròn (O; R) đường kính AB. Vẽ tiếp tuyến Ax (Ax và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB), trên tia Ax lấy điểm C (AC > R). Vẽ tiếp tuyến CD với nửa đường tròn (D là tiếp điểm), đường thẳng CD cắt AB tại E. Chứng minh: a) Bốn điểm C, A, D, O cùng thuộc một đường tròn. b) CO // BD. c) CD = CE.cosDOE.
Đề cuối kì 1 Toán 9 năm 2023 - 2024 phòng GDĐT Gia Lâm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kì 1 môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Gia Lâm, thành phố Hà Nội. Trích dẫn Đề cuối kì 1 Toán 9 năm 2023 – 2024 phòng GD&ĐT Gia Lâm – Hà Nội : + Cho hàm số y = x + 1 có đồ thị là (d1) và hàm số y = −x + 1 có đồ thị là (d2). 1/ Vẽ (d1) và (d2) trên cùng một mặt phẳng tọa độ. 2/ Đường thẳng (d1) cắt đường thẳng (d2) tại C. Hai đường thẳng (d1) và (d2) cắt trục Ox theo thứ tự tại A và B. Tính diện tích của tam giác ABC. + Khi mặt trời chiếu qua đỉnh ngọn cây thì góc tạo bởi tia nắng mặt trời với mặt đất là 280 và bóng cây trên mặt đất là 16m. Tính chiều cao của cây (làm tròn đến chữ số thập phân thứ nhất). + Cho đường tròn (O;R) và điểm M cố định ngoài (O), kẻ các tiếp tuyến MA, MB với (O) (A, B là tiếp điểm). a) Chứng minh rằng bốn điểm M, A, O, B thuộc một đường tròn. b) Kẻ đường kính BD của (O). Chứng minh OM vuông góc AB và MO song song với AD. c) Trên cung nhỏ AB lấy điểm E và từ E kẻ tiếp tuyến với (O) cắt MA, MB lần lượt tại I và K. Chứng minh chu vi tam giác MIK và độ lớn góc IOK không phụ thuộc vào vị trí điểm E. d) Đường thẳng qua O vuông góc với OM cắt MA, MB lần lượt tại H và G. Tìm vị trí điểm E để tổng IH + KG có độ dài nhỏ nhất.
Đề cuối học kì 1 Toán 9 năm 2023 - 2024 phòng GDĐT Chí Linh - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kì 1 môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND thành phố Chí Linh, tỉnh Hải Dương; đề thi có đáp án trắc nghiệm và hướng dẫn chấm điểm tự luận. Trích dẫn Đề cuối học kì 1 Toán 9 năm 2023 – 2024 phòng GD&ĐT Chí Linh – Hải Dương : + Cho hàm số: y = (1 – 3m)x + 5m (d) (m là tham số). 1) Tìm m để hàm số trên nghịch biến trên R. 2) Tìm m để đường thẳng (d) cắt đường thẳng y = 4x + 7m + 6 (d’) tại một điểm trên trục tung. + Cho đường tròn (O; R) và một điểm A nằm ngoài đường tròn. Từ A kẻ hai tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm). Gọi giao điểm của AO và BC là H. Kẻ đường kính BD. a) Chứng minh: 4 điểm A, B, O, C cùng thuộc một đường tròn. b) Chứng minh 2 4 BD OH OA. c) Từ O kẻ OI ⊥ AD (I ∈ AD). Hai đường thẳng OI và BC cắt nhau tại M. Chứng minh MD là tiếp tuyến của đường tròn (O). + Tìm x để biểu thức A đạt giá trị lớn nhất: A 1 3 26 5 x.
Đề học kì 1 Toán 9 năm 2023 - 2024 phòng GDĐT Bình Lục - Hà Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng cuối học kì 1 môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Bình Lục, tỉnh Hà Nam; đề thi có đáp án và hướng dẫn chấm điểm mã đề 901 902 903 904. Trích dẫn Đề học kì 1 Toán 9 năm 2023 – 2024 phòng GD&ĐT Bình Lục – Hà Nam : + Cho hàm số bậc nhất y = (2 – m)x + m + 1 (với m là tham số) có đồ thị là đường thẳng (d). a) Tìm giá trị của m để hàm số nghịch biến trên R. b) Tìm m để đường thẳng (d) cắt đường thẳng y = 3x – 2 tại điểm có hoành độ bằng 2. + Cho đường tròn (O; R) đường kính AB và điểm M thuộc đường (O) (MA < MB, M khác A và B). Kẻ MH vuông góc với AB tại H. a) Chứng minh ∆ABM vuông. Giả sử MA = 6 cm, MB = 8cm, hãy tính MH. b) Tiếp tuyến tại A của đường tròn (O) cắt tia BM ở C. Gọi N là trung điểm của AC. Chứng minh đường thẳng NM là tiếp tuyến của đường tròn (O). c) Tiếp tuyến tại B của (O) cắt đường thẳng MN tại D. Chứng minh AN.BD = R2 và OC ⊥ AD. + Cho hai hàm số y = 3x + 2 và y = (m + 2)x – 3 (với m khác -2). Tìm m để đồ thị của hai hàm số trên là hai đường thẳng song song.