Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chìa khóa giải nhanh hình học Oxy - Nguyễn Thanh Tùng

Tài liệu gồm 44 trang định hướng cách giải các dạng toán phương pháp tọa độ trong mặt phẳng Oxy do thầy Nguyễn Thanh Tùng biên soạn. Có lẽ thị trường sách tham khảo chưa bao giờ phát triển như hiện nay. Bởi với bạn đọc, để tìm một cuốn sách về một chủ đề nào đó lại gặp rất nhiều khó khăn. Không phải bởi sự khan hiếm, mà bạn đọc đứng trước quá nhiều sự lựa chọn. Khi cầm trên tay cuốn sách này, chắc chắn bạn cũng đang băn khoăn liệu đây có phải là cuốn sách phù hợp dành cho bạn. Nếu chỉ đọc một vài trang đầu, chắc chắn bạn sẽ chưa cảm nhận hết được cách viết và ý tưởng mà tác giả muốn gửi gắm thông qua cuốn sách này. Bạn có thể hình dung ý tưởng của việc giải toán, giống như bạn phải tìm đúng con đường để về đích và chọn một con đường ngắn nhất luôn là điều chúng ta muốn hướng tới. Để làm tốt được điều này, trên hành trình tìm ra đích đến, chúng ta thường nhớ tới các mốc, những địa điểm dễ nhớ gắn liền với đích đến. Và trong cuốn sách này tác giả thiết kế dựa trên ý tưởng đó, bằng cách tạo ra những điểm mốc thông qua 10 bài toán gốc. Trên con đường để tìm đến đáp số các bạn sẽ cần những bài toán này. Nghĩa là khi nhìn thấy chúng, bạn đã biết cách để tìm ra được lời giải cho các bài toán. Đây là 10 bài toán quan trọng, là linh hồn để tạo ra các bài toán khác. Có thể sẽ có rất nhiều bạn sẽ ngạc nhiên khi đọc nội dung các bài toán gốc, vì thực ra nó khá đơn giản. Nhưng các bạn có biết rằng, ý tưởng được lấy từ các bài toán này chính là nguồn cảm hứng cho các câu hỏi xuất hiện trong đề thi quốc gia. Chúng gần như giải quyết hầu hết các bài toán thi Đại Học trong các năm vừa qua và tác giả tin nó sẽ có giá trị rất nhiều trong các kì thi Quốc Gia sắp tới. [ads] Mong rằng với cách tiếp cận hoàn toàn mới này sẽ giúp bạn đọc thấy thích thú và việc chinh phục các câu hỏi liên quan đến hình học phẳng Oxy không còn là vấn đề lớn đối với các bạn. Cũng hi vọng cuốn sách sẽ giúp ích cho các bạn học sinh trong quá trình học tập, ôn thi một cách chủ động, tự tin bước vào kì thi Quốc Gia và là tài liệu tham khảo hữu ích cho các thầy cô trong quá trình giảng dạy. Trong cuốn sách này tác giả giới thiệu tới các bạn 5 phần: PHẦN 1: TỔNG HỢP KIẾN THỨC CƠ BẢN PHẦN 2: NHỮNG BÀI TOÁN CƠ BẢN PHẦN 3: 10 BÀI TOÁN HÌNH HỌC PHẲNG OXY PHẦN 4: SÁNG TẠO VÀ PHÁT TRIỂN TỪ CÁC BÀI TOÁN HÌNH HỌC PHẲNG THUẦN TÚY PHẦN 5: BÀI TẬP TỔNG HỢP TỰ LUYỆN Mặc dù rất nghiêm túc trong quá trình biên soạn, song chắc chắn sẽ không tránh khỏi những sai xót và khiếm khuyết. Rất mong nhận được sự phản hồi, góp ý và xây dựng từ phía bạn đọc, để cuốn sách được hoàn thiện hơn cho những lần tái bản sau.

Nguồn: toanmath.com

Đọc Sách

Tài liệu 10 bài toán trọng điểm hình học giải tích phẳng Oxy - Nguyễn Thanh Tùng
Tài liệu 10 bài toán trọng điểm hình học giải tích phẳng Oxy của tác giả Nguyễn Thanh Tùng hướng dẫn kỹ thuật giải các bài toán Oxy từ cơ bản đến nâng cao, tài liệu được chia thành 5 phần: Phần 1: Tổng hợp các kiến thức cơ bản Phần 2: Những bài toán cơ bản Phần 3: 10 bài toán hình học OXY Phần 4: Sáng tạo và phát triển từ các bài toán hình học phẳng thuần túy Phần 5: Bài tập tổng hợp [ads]
Tuyển tập hình học giải tích trong mặt phẳng - Diễn đàn BoxMath
Tài liệu gồm 122 trang tuyển chọn các bài toán hình học giải tích trong mặt phẳng có lời giải chi tiết. Trích lời của chủ biên Châu Ngọc Hùng: “Hình học giải tích hay hình học tọa độ là một cách nhìn khác về Hình học. Hình học giải tích trong mặt phẳng được đưa vào chương trình toán của lớp 10 nhưng vẫn có trong đề thi tuyển sinh Đại học, Cao đẳng. Để góp phần trong việc ôn tập cho học sinh trước khi dự thi Diễn đàn BoxMath xin đóng góp tuyển tập này. Khi thực hiện biên soạn trên diễn đàn BoxMath, tôi đã nhận được sự quan tâm của nhiều thành viên và quản trị viên. Những người đã góp sức vào quá trình biên soạn, góp ý sửa chữa về các chi tiết trong tuyển tập. Sự đóng góp của các bạn, và những thầy cô tâm huyết chứng tỏ cuốn tài liệu này là cần thiết cho học sinh. Bây giờ đây, khi bạn đang đọc nó trên máy tính hay đã được in ra trên giấy. Chúng tôi hy vọng nó sẽ góp phần ôn tập kiến thức của bản thân đồng thời tăng thêm động lực khi học tập hình học giải tích trong không gian. Mặc dù đã biên soạn rất kỹ tuy nhiên tài liệu có thể vẫn còn sai sót, mong các bạn khi đọc hãy nhặt ra dùm và gởi email về [email protected]. Đồng thời qua đây cũng xin phép các Tác giả đã có bài tập trong tuyển tập này mà chúng tôi chưa nhớ ra để ghi rõ nguồn gốc vào, cùng lời xin lỗi chân thành. Thay mặt nhóm biên soạn, tôi xin chân thành cảm ơn! [ads] Các thành viên biên soạn 1. Huỳnh Chí Hào -THPT Chuyên Nguyễn Quang Diêu – Đồng Tháp 2. Lê Đình Mẫn – THPT Nguyễn Chí Thanh – Quảng Bình 3. Lê Trung Tín – THPT Hồng Ngự 2 – Đồng Tháp 4. Đỗ Kiêm Tùng – THPT Ngọc Tảo – Hà Nội 5. Tôn Thất Quốc Tấn – Huế 6. Nguyễn Tài Tuệ – THPT Lương Thế Vinh – Vụ Bản Nam Định 7. Nguyễn Xuân Cường – THPT Anh Sơn 1 – Nghệ An 8. Lê Đức Bin – THPT Đồng Xoài – Bình Phước 9. Châu Ngọc Hùng – THPT Ninh Hải – Ninh Thuận 10. Phạm Tuấn Khải – THPT Trần Văn Năng – Đồng Tháp
Tuyển tập 110 bài toán hình học giải tích phẳng Oxy - Nguyễn Đình Sỹ
Tuyển tập 110 bài toán hình học giải tích phẳng Oxy hay nhất của tác giả Nguyễn Đình Sỹ. Các bài toán trong tài liệu được chọn lọc kĩ càng, bao gồm nhiều dạng khác nhau. Mỗi bài giải đều có đáp án chi tiết. Tài liệu gồm  50 trang. Hy vọng tài liệu sẽ giúp bạn đọc ‘chiến thắng’ một trong những câu phân loại của đề thi Quốc gia. Trích dẫn tài liệu : + Trong mặt phẳng oxy cho ΔABC có A(2; 1). Đường cao qua đỉnh B có phương trình x – 3y – 7 = 0. Đường trung tuyến qua đỉnh C có phương trình: x + y +1 = 0. Xác định tọa độ B và C. Tính diện tích ΔABC. [ads] + Trong (Oxy) cho hai điểm A(2√3; 2) và B(2√3; -2) a/ Chứng tỏ tam giác OAB là tam giác đều b/ Chứng minh rằng tập hợp các điểm M sao cho: MO^2 + MA^2 + MB^2 = 32 là một đường tròn (C) c/ Chứng tỏ (C) là đường tròn ngoại tiếp tam giác OAB + Trong mặt phẳng Oxy cho điểm M(2; -1) và đường tròn (c1): x^2 + y^2 = 9. Hãy viết phương trình đường tròn (C2) có bán kính bằng 4 và cắt đường tròn (C1) theo dây cung qua M có độ dài nhỏ nhất.
Một số tính chất hình học phẳng thường dùng trong bài toán Oxy - Võ Quang Mẫn
Tài liệu một số tính chất hình học phẳng thường dùng trong bài toán Oxy của tác giả Võ Quang Mẫn là tuyển tập những tính chất được tác giả rút ra từ các bài toán Oxy trong đề thi và đề thi thử Quốc gia của các trường THPT trên toàn quốc. Đối với bài toán Oxy, có thể nói đây thực sự là một bài toán khó, đòi hỏi học sinh phải có nền tảng kiến thức hình học phẳng vững chắc được xây dựng từ bậc THCS, nhiều bài toán yêu cầu học sinh phải nhận ra được những đặc điểm, những mối quan hệ đặc biệt trong hình vẽ của bài toán mới có thể giải quyết được, và nhiều khi đã nhận ra những tính chất nhưng lại không chứng minh được. Do vậy, những tính chất điển hình mà tác giả Võ Quang Mẫn tổng hợp thực sự vô cùng bổ ích, tài liệu giúp chúng ta nắm biết trước các tính chất thường gặp và biết cách chứng minh những tính chất đó. Như vậy, sẽ thật là dễ dàng nếu chúng ta bắt gặp một bài toán Oxy vận dụng các tính chất có trong tài liệu. [ads] Hy vọng tài liệu sẽ giúp cải thiện khả năng tư duy hình vẽ và hình học Oxy của bạn đọc. Truy cập website toanmath.com thường xuyên để xem và tải về miễn phí những tài liệu hay nhất và mới nhất. Xin chân thành cám ơn bạn đã thường xuyên ghé thăm và ủng hộ Toán Math.