Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPTQG 2019 lần 3 trường THPT Yên Lạc 2 - Vĩnh Phúc

Hiện đã bước vào những ngày cuối tháng 03 năm 2019, và còn khoảng 03 tháng nữa là kỳ thi chính thức THPT Quốc gia môn Toán năm học 2018 – 2019 do Bộ Giáo dục và Đào tạo tổ chức sẽ diễn ra, do đó trường THPT Yên Lạc 2 – Vĩnh Phúc tiếp tục tổ chức các kỳ thi thử THPTQG 2019 môn Toán để giúp các em học sinh khối 12 được rèn luyện, thử sức thường xuyên, nhằm có một sự chuẩn bị thật tốt trước khi kỳ thi chính thức bắt đầu. giới thiệu đến thầy, cô và các em đề thi thử Toán THPTQG 2019 lần 3 trường THPT Yên Lạc 2 – Vĩnh Phúc, đề thi có mã 101 được biên soạn dựa trên cấu trúc đề tham khảo THPT Quốc gia môn Toán do Bộ Giáo dục và Đào tạo công bố, đề gồm 05 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, học sinh có 90 phút để làm bài, đề thi có đáp án. Trích dẫn đề thi thử Toán THPTQG 2019 lần 3 trường THPT Yên Lạc 2 – Vĩnh Phúc : + Một đề thi thử THPTQG 2019 môn Toán dạng trắc nghiệm gồm 12 câu hỏi, mỗi câu hỏi có 5 phương án trả lời, nhưng chỉ có một phương án đúng. Mỗi câu trả lời đúng được 4 điểm, mỗi câu trả lời sai bị trừ đi 1 điểm. Một học sinh làm bài kém làm bằng cách chọn hú họa một câu trả lời. Tính xác suất để học sinh đó bị điểm âm? [ads] + Trong không gian Oxyz, cho mặt cầu (S): x^2 + y^2 + z^2 – 2x – 4y + 2z + 2 = 0 và cho mặt phẳng (P): 2x + y – 2z – 3 = 0. Chọn khẳng định đúng trong các khẳng định sau: A. Giao của (S) và (P) là một đường tròn. B. Giao của (S) và (P) là một đoạn thẳng. C. Giao của (S) và (P) là một điểm. D. Giao của (S) và (P) là tập rỗng. + Cho hình chóp tứ giác đều S.ABCD mà khoảng cách từ A đến mặt phẳng (SBC) bằng 2a. Gọi α là góc giữa mặt bên và mặt đáy của hình chóp. Khối chóp có thể tích nhỏ nhất khi cosα = m√3/n (m, n là phân số tối giản). Tính m^2 + n.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT năm 2024 môn Toán sở GDĐT Hà Tĩnh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp Trung học Phổ thông năm 2024 môn Toán sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; đề thi có đáp án trắc nghiệm mã đề 001 – 002 – 003 – 004 – 005 – 006 – 007 – 008 và hướng dẫn giải chi tiết các bài toán vận dụng – vận dụng cao. Trích dẫn Đề thi thử tốt nghiệp THPT năm 2024 môn Toán sở GD&ĐT Hà Tĩnh : + Trong không gian Oxyz, cho mặt cầu (S): (x − 1)2 + (y − 2)2 + (z − 3)2 = 9 và điểm A (0; 1; −2). Từ A kẻ các tiếp tuyến đến (S) với các tiếp điểm thuộc đường tròn (C1). Từ điểm M di động nằm ngoài (S) và nằm trong mặt phẳng chứa đường tròn (C1) kẻ các tiếp tuyến đến (S) với các tiếp điểm thuộc đường tròn (C2). Biết rằng nếu (C1) và (C2) có cùng bán kính thì M luôn thuộc một đường tròn cố định. Bán kính r của đường tròn đó bằng? + Một bông hoa tai bằng vàng có dạng xích nối như hình vẽ. Biết phía trên là hình trụ có thiết diện qua trục là một hình vuông cạnh 1cm. Phía dưới là 3 quả cầu nối tiếp nhau sao cho chiều cao hình trụ và đường kính của chúng theo thứ tự tạo thành cấp số nhân với công bội q = 2. (Giả sử phần dây nối có thể tích không đáng kể). Tính thể tích bông hoa tai? + Trong không gian Oxyz, cho hình chóp S.ABCD có A (0; 0; 0), B (2; 0; 0), C (2; 2; 0), D (0; 2; 0), S (0; 0; 2). Gọi G là trọng tâm tam giác SAC, M là điểm thuộc miền trong của tứ giác ABCD sao cho tia MG cắt mặt bên SAB của hình chóp tại N. Khi biểu thức Q = MG NG + NG MG đạt giá trị nhỏ nhất thì điểm M chạy trên một đoạn thẳng, đường thẳng chứa đoạn thẳng đó đi qua điểm nào sau đây?
Đề thi thử Toán tốt nghiệp THPT 2024 lần 2 trường THPT Đặng Thúc Hứa - Nghệ An
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán tốt nghiệp THPT năm 2024 lần 2 trường THPT Đặng Thúc Hứa, tỉnh Nghệ An; đề thi có đáp án trắc nghiệm mã đề 101 – 102. Trích dẫn Đề thi thử Toán tốt nghiệp THPT 2024 lần 2 trường THPT Đặng Thúc Hứa – Nghệ An : + Một vật trang trí có dạng khối tròn xoay tạo thành khi quay miền R được giới hạn bởi đường gấp khúc DABFE và cung tròn ED (phần gạch chéo trong hình bên) xung quanh trục AB. Biết ABCD là hình chữ nhật cạnh AB 3cm AD 2cm F là trung điểm của BC; điểm E cách AD một đoạn bằng 1cm. Tính thể tích của vật trang trí đó, làm tròn kết quả đến hàng phần mười. + Cho hình lăng trụ ABCA B C có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của A lên mặt phẳng ABC trùng với trọng tâm G tam giác ABC. Biết khoảng cách từ điểm G đến đường thẳng AA bằng a 3 6. Thể tích của khối lăng trụ ABCA B C bằng? + Xét các số phức zw thỏa mãn z 1 z w 2 và số phức z w có phần ảo bằng 2. Giá trị lớn nhất của biểu thức z w 1 2i có dạng a b với a là số nguyên và b là số nguyên tố. Tích ab bằng?
Đề thi thử Toán tốt nghiệp THPT 2024 lần 2 trường THPT Thủy Sơn - Hải Phòng
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán tốt nghiệp THPT năm học 2023 – 2024 lần 2 trường THPT Thủy Sơn, thành phố Hải Phòng; đề thi có đáp án trắc nghiệm mã đề 000 132 256 374 415 528 625 743 854. Trích dẫn Đề thi thử Toán tốt nghiệp THPT 2024 lần 2 trường THPT Thủy Sơn – Hải Phòng : + Một téc nước hình trụ, đang chứa nước được đặt nằm ngang, có chiều dài 3m và đường kính đáy 1m. Hiện tại nước trong téc cách phía trên đỉnh của téc 0, 25m (xem hình vẽ). Tính thể tích của nước trong téc (kết quả làm tròn đến hàng phần nghìn)? + Trong không gian Oxyz cho mặt phẳng 2 5 0 P xyz và đường thẳng 332 xyz d. Biết rằng trong mặt phẳng P có hai đường thẳng 1 2 d cùng đi qua điểm A(3;-1;0) và cùng cách đường thẳng d một khoảng bằng 3. Tính sinϕ với ϕ là góc giữa hai đường thẳng 1 2 d? + Cho hàm số bậc ba y fx có đồ thị là đường cong trong hình bên dưới với f (1 0) và 2 20. Biết hàm số f x đạt cực trị tại hai điểm 1 2 x thỏa mãn 2 1 x. Gọi 1 S và 2 S là diện tích của hai hình phẳng được gạch trong hình bên dưới. Tỉ số 1 2 S S thuộc khoảng nào dưới đây?
Đề thi thử TN THPT 2024 lần 1 môn Toán trường THPT Kẻ Sặt - Hải Dương
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2023 – 2024 lần 1 môn Toán trường THPT Kẻ Sặt, tỉnh Hải Dương; đề thi có đáp án trắc nghiệm mã đề 201 – 202. Trích dẫn Đề thi thử TN THPT 2024 lần 1 môn Toán trường THPT Kẻ Sặt – Hải Dương : + Cho hình nón có chiều cao h = 20, bán kính đáy r = 25. Một thiết diện đi qua đỉnh của hình nón có khoảng cách từ tâm của đáy đến mặt phẳng chứa thiết diện là 12. Tính diện tích S của thiết diện đó. + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy ABCD, góc giữa hai mặt phẳng SBD và ABCD bằng 0 60. Gọi M N lần lượt là trung điểm của SB SC. Tính thể tích khối chóp S.ADNM. + Khối chóp S.ABCD có A, B, C, D cố định và S chạy trên đường thẳng song song với AC. Khi đó thể tích khối chóp S.ABCD sẽ: A. Tăng gấp đôi. B. Giữ nguyên. C. Tăng gấp bốn. D. Giảm phân nửa.