Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Lũy thừa, mũ và logarit trong các đề thi thử THPTQG môn Toán

Tài liệu gồm 1313 trang được sưu tầm và biên soạn bởi thầy giáo Th.S Nguyễn Chín Em, tuyển tập các câu hỏi và bài tập trắc nghiệm chuyên đề hàm số lũy thừa, hàm số mũ và hàm số logarit có đáp án và lời giải chi tiết trong các đề thi thử THPT Quốc gia môn Toán những năm gần đây; giúp các em học sinh khối 12 học tốt chương trình Giải tích 12 chương 2 (Hàm số lũy thừa, hàm số mũ và hàm số logarit) và ôn thi THPT Quốc gia môn Toán. Nội dung tài liệu được chia thành 5 phần dựa theo độ khó của các câu hỏi và bài tập: + Phần 1. Mức độ nhận biết (Trang 3). + Phần 2. Mức độ thông hiểu (Trang 73). + Phần 3. Mức độ vận dụng thấp (Trang 245). + Phần 4. Mức độ vận dụng cao (Trang 340). + Phần 5. Các bài toán vận dụng thực tế (Trang 386). [ads] Trích dẫn tài liệu lũy thừa, mũ và logarit trong các đề thi thử THPTQG môn Toán: + Cho các mệnh đề sau: (I). Cơ số của lôgarit phải là số dương. (II). Chỉ số số thực dương mới có lôgarit. (III). ln(A + B) = ln A + ln B với mọi A > 0, B > 0. (IV). loga b · logb c · logc a = 1 với mọi a, b, c ∈ R. Số mệnh đề đúng là? + Lũy thừa với số mũ hữu tỉ thì cơ số phải thỏa mãn điều kiện nào sau đây? A. Cơ số phải là số thực khác 0. B. Cơ số phải là số nguyên . C. Cơ số phải là số thực tùy ý. D. Cơ số phải là số thực dương. + Để giải phương trình 2^x.(3x^2 − 2) = 2x bạn Việt tiến hành giải bốn bước sau: Bước 1. Ta nhận thấy phương trình không có nghiệm x = 0 nên phương trình tương đương (3x^2 − 2)/2x = (1/2)^x. Bước 2. Ta nhận thấy phương trình có nghiệm x = 1. Bước 3. Ta có vế phải y = (1/2)^x là hàm số nghịch biến trên R (vì cơ số 1/2 < 1); vế trái y = (3x^2 − 2)/2x có y’ = 3/2 + 1/x^2 > 0, ∀x khác 0 nên vế trái là hàm số đồng biến trên các khoảng (−∞; 0) và (0; +∞). Bước 4. Do đó phương trình có nghiệm duy nhất x = 1. Khẳng định nào sau đây đúng? A. Bạn Việt giải hoàn toàn đúng. B. Bạn Việt giải sai từ bước 2. C. Bạn Việt giải sai từ bước 3. D. Bạn Việt giải sai từ bước 4. + Cho phương trình m ln2 (x + 1) − (x + 2 − m) ln(x + 1) − x − 2 = 0 (1). Tập tất cả giá trị của tham số m để phương trình (1) có các nghiệm, trong đó có hai nghiệm phân biệt thỏa mãn 0 < x1 < 2 < 4 < x2 là khoảng (a; +∞). Khi đó, a thuộc khoảng? + Cho các số thực a, b, c không âm thoả mãn 2a + 4b + 8c = 4. Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức S = a + 2b + 3c. Giá trị của biểu thức 4M + logM m bằng?

Nguồn: toanmath.com

Đọc Sách

Tài liệu hàm số mũ và hàm số lôgarit Toán 11 CTST
Tài liệu gồm 112 trang, bao gồm tóm tắt lý thuyết, các dạng toán, bài tập tự luyện và bài tập trắc nghiệm chuyên đề hàm số mũ và hàm số lôgarit trong chương trình môn Toán 11 Chân Trời Sáng Tạo (CTST), có đáp án và hướng dẫn giải. Chương VI . HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT. Bài 1 . PHÉP TÍNH LŨY THỪA. A. TÓM TẮT LÝ THUYẾT. B. CÁC DẠNG TOÁN. – Dạng 1. Rút gọn và tính giá trị biểu thức chứa lũy thừa. – Dạng 2. Chứng minh đẳng thức lũy thừa. – Dạng 3. Bài toán thực tế. C. BÀI TẬP TỰ LUYỆN. D. BÀI TẬP TRẮC NGHIỆM. E. HƯỚNG DẪN GIẢI. Bài 2 . LÔGARIT. A. TÓM TẮT LÝ THUYẾT. B. CÁC DẠNG TOÁN. – Dạng 1. Tính giá trị của biểu thức. – Dạng 2. Biến đổi, rút gọn, biểu diễn biểu thức chứa lôgarit. – Dạng 3. Tính lôgarit theo lôgarit khác. + Dạng 3.1. Tính lôgarit theo 1 lôgarit khác. + Dạng 3.2. Tính lôgarit theo 2 lôgarit khác. + Dạng 3.3. Tính lôgarit theo 3 lôgarit khác. C. BÀI TẬP TỰ LUYỆN. D. BÀI TẬP TRẮC NGHIỆM. E. HƯỚNG DẪN GIẢI. Bài 3.1 . HÀM SỐ MŨ. A. TÓM TẮT LÝ THUYẾT. B. CÁC DẠNG TOÁN. – Dạng 1. So sánh các cặp số. – Dạng 2. Đồ thị của hàm số mũ. – Dạng 3. Bài toán thực tế. C. BÀI TẬP TỰ LUYỆN. D. BÀI TẬP TRẮC NGHIỆM. E. HƯỚNG DẪN GIẢI. Bài 3.2 . HÀM SỐ LÔGARIT. A. TÓM TẮT LÝ THUYẾT. B. CÁC DẠNG TOÁN. – Dạng 1. So sánh các cặp số. – Dạng 2. Đồ thị của hàm số lôgarit. – Dạng 3. Bài toán thực tế. C. BÀI TẬP TỰ LUYỆN. D. BÀI TẬP TRẮC NGHIỆM. E. HƯỚNG DẪN GIẢI. Bài 4 . PHƯƠNG TRÌNH BẤT PHƯƠNG TRÌNH MŨ VÀ LÔGARIT. A. TÓM TẮT LÝ THUYẾT. B. CÁC DẠNG TOÁN. – Dạng 1. Đưa về cùng cơ số. – Dạng 2. Phương pháp đặt ẩn phụ. – Dạng 3. Phương pháp mũ hóa, lôgarit hai vế. – Dạng 4. Phương pháp phân tích thành nhân tử. C. BÀI TẬP TỰ LUYỆN. D. BÀI TẬP TRẮC NGHIỆM. E. HƯỚNG DẪN GIẢI. BÀI TẬP ÔN TẬP CUỐI CHƯƠNG VI.
Chuyên đề hàm số mũ và hàm số lôgarit Toán 11 CTST
Tài liệu gồm 268 trang, bao gồm lý thuyết, hướng dẫn giải bài tập trong sách giáo khoa, các dạng bài tập tự luận và hệ thống bài tập trắc nghiệm chuyên đề hàm số mũ và hàm số lôgarit trong chương trình SGK Toán 11 Chân Trời Sáng Tạo (viết tắt: Toán 11 CTST), có đáp án và lời giải chi tiết. BÀI 1 . PHÉP TÍNH LŨY THỪA. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Tính giá trị của biểu thức. + Dạng 2. Biến đổi, rút gọn, biểu diễn các biểu thức. + Dạng 3. Bài toán lãi suất kép – dân số. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Rút gọn biểu thức lũy thừa. + Dạng 2. Tính giá trị biểu thức. + Dạng 3. So sánh các biểu thức chứa lũy thừa. + Dạng 4. Bài toán lãi suất – dân số. BÀI 2 . PHÉP TÍNH LÔGARIT. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. BÀI 3 . HÀM SỐ MŨ – HÀM SỐ LÔGARIT. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Tìm tập xác định của hàm số mũ – lôgarit. + Dạng 2. Bài toán lãi suất kép. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Tập xác định. + Dạng 2. Sự biến thiên. + Dạng 3. Đồ thị. + Dạng 4. Bài toán lãi suất. BÀI 4 . PHƯƠNG TRÌNH – BẤT PHƯƠNG TRÌNH MŨ và LÔGARIT. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Phương trình mũ. + Dạng 2. Phương trình logarit. + Dạng 3. Bất phương trình mũ. + Dạng 4. Bất phương trình logarit.
Bài giảng hàm số mũ và hàm số lôgarit Toán 11 KNTTvCS
Tài liệu gồm 164 trang, được biên soạn bởi thầy giáo Trần Đình Cư, bao gồm tóm tắt kiến thức cơ bản cần nắm, phân loại và phương pháp giải bài tập chuyên đề hàm số mũ và hàm số lôgarit trong chương trình môn Toán 11 Kết Nối Tri Thức Với Cuộc Sống (KNTTvCS). BÀI 18 . LŨY THỪA VỚI SỐ MŨ THỰC. + Dạng 1. Rút gọn biểu thức. + Dạng 2. Viết biểu thức dưới dạng lũy thừa. + Dạng 3. So sánh. BÀI 19 . LÔGARIT. + Dạng 1. Rút gọn biểu thức. + Dạng 2. Biểu diễn theo lôgarit. + Dạng 3. So sánh. BÀI 20 . HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT. + Dạng 1. Tìm tập xác định, tập giá trị của hàm số. + Dạng 2. So sánh. + Dạng 3. Đồ thị hàm số. BÀI 21 . PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH MŨ VÀ LÔGARIT. + Dạng 1. Đưa về cùng cơ số. + Dạng 2. Phương pháp đặt ẩn phụ. + Dạng 3. Lôgarit hóa, mũ hóa. BÀI TẬP CUỐI CHƯƠNG VI. BÀI TẬP TỔNG ÔN.
Tài liệu chuyên đề bất phương trình mũ và bất phương trình lôgarit
Tài liệu gồm 94 trang, tổng hợp lý thuyết, các dạng toán và bài tập tự luận + trắc nghiệm chuyên đề bất phương trình mũ và bất phương trình lôgarit, từ cơ bản đến nâng cao, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình môn Toán 12. BÀI 6 . BẤT PHƯƠNG TRÌNH MŨ – LÔGARIT. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Bất phương trình cơ bản – phương pháp đưa về cùng cơ số. + Dạng 2. Bất phương trình mũ giải bằng phương pháp đặt ẩn phụ. + Dạng 3. Bất phương trình lôgarit giải bằng phương pháp đặt ẩn phụ. + Dạng 4. Bất phương trình mũ – lôgarit phương pháp xét hàm. + Dạng 5. Một số bài toán kết hợp các phương pháp. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. 1. Bài tập trắc nghiệm trích từ đề tham khảo và đề chính thức của Bộ Giáo dục và Đào tạo từ năm 2017 đến nay. 2. Hệ thống bài tập trắc nghiệm. + Dạng 1. Bất phương trình mũ. + Dạng 2. Bất phương trình lôgarit. + Dạng 3. Bất phương trình mũ – mức độ 2 – 3. + Dạng 4. Bất phương trình lôgarit – mức độ 2 – 3. 3. Bài tập trắc nghiệm mức độ vận dụng – vận dụng cao. + Dạng 1. Bất phương trình lôgarit chứa tham số. + Dạng 2. Bất phương trình mũ chứa tham số. + Dạng 3. Bất phương trình nhiều ẩn.