Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề tìm giá trị phân số của một số cho trước, tìm một số biết giá trị một phân số của nó

Nội dung Chuyên đề tìm giá trị phân số của một số cho trước, tìm một số biết giá trị một phân số của nó Bản PDF - Nội dung bài viết Chuyên đề: Tìm giá trị phân số của một số cho trướcPhần I: LÝ THUYẾT TRỌNG TÂMPhần II: CÁC DẠNG BÀI TẬP Chuyên đề: Tìm giá trị phân số của một số cho trước Chuyên đề này bao gồm 14 trang tài liệu, trong đó trình bày lý thuyết cơ bản và các dạng toán liên quan đến việc tìm giá trị phân số của một số cho trước. Nội dung tài liệu cung cấp đầy đủ đáp án và lời giải chi tiết, nhằm hỗ trợ học sinh lớp 6 trong quá trình học tập môn Toán phần Số học chương 3: Phân số. Mục tiêu của chuyên đề: Kiến thức: Nhận biết và hiểu được quy tắc tìm giá trị phân số của một số cho trước, tìm một số biết giá trị một phân số của nó. Kỹ năng: Vận dụng được quy tắc tìm giá trị phân số của một số cho trước, tìm một số biết giá trị một phân số của nó. Áp dụng vào các bài toán thực tiễn. Chuyên đề được chia thành hai phần chính: Phần I: LÝ THUYẾT TRỌNG TÂM Trong phần này, học sinh sẽ được hướng dẫn về lý thuyết cơ bản liên quan đến cách tìm giá trị phân số của một số cho trước. Phần II: CÁC DẠNG BÀI TẬP Chuyên đề bao gồm các dạng bài tập phổ biến như sau: Dạng 1: Tìm giá trị phân số của một số cho trước. Để tìm số m của số b cho trước, học sinh cần tính m% của số b. Dạng 2: Tìm một số biết giá trị phân số của nó. Để tìm một số biết m n của nó bằng a, học sinh cần áp dụng quy tắc tương ứng. Dạng 3: Đây là dạng toán kết hợp sử dụng hai dạng trên, đòi hỏi học sinh có khả năng tư duy linh hoạt và áp dụng kiến thức đã học. Chuyên đề này sẽ giúp học sinh lớp 6 nắm vững kiến thức cơ bản về phân số và phát triển kỹ năng giải các bài toán liên quan đến việc tìm giá trị phân số của một số. Chúc các em học tốt!

Nguồn: sytu.vn

Đọc Sách

Tài liệu dạy thêm - học thêm chuyên đề tập hợp
Tài liệu gồm 18 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề tập hợp, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHẦN I . TÓM TẮT LÝ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Biểu diễn một tập hợp cho trước. * Để biểu diễn một tập hợp cho trước, ta thường có hai cách sau: + Cách 1: Liệt kê các phần tử của tập hợp. + Cách 2: Chỉ ra tính chất đặc trưng cho các phần tử của tập hợp đó. * Lưu ý: + Tên tập hợp viết bằng chữ cái in hoa và các phần tử được viết bên trong hai dấu ngoặc nhọn. + Mỗi phần tử được liệt kê một lần, thứ tự liệt kê tùy ý. + Các phần tử trong một tập hợp được viết cách nhau bởi dấu “;” hoặc dấu “,”. Trong trường hợp có phần tử của tập hợp là số, ta dùng dấu “;” nhằm tránh nhầm lẫn giữa số tự nhiên và số thập phân. Dạng 2 . Quan hệ giữa phần tử và tập hợp, giữa tập hợp và tập hợp. * Để diễn tả quan hệ giữa phần tử và tập hợp ta dùng kí hiệu: + a A nếu phần tử a thuộc tập hợp A. + b A nếu phần tử b không thuộc tập hợp A. * Để diễn tả quan hệ giữa tập hợp và tập hợp ta dùng kí hiệu: + A B: Nếu mọi phần tử của tập hợp A đều thuộc tập hợp B thì tập hợp A được gọi là tập hợp con của tập hợp B. + A B nếu A B và B A. Dạng 3 . Minh họa tập hợp cho trước bằng biểu đồ Ven. Để minh họa tập hợp cho trước bằng biểu đồ Ven, ta thực hiện theo các bước sau: + Bước 1: Liệt kê các phần tử của tập hợp. + Bước 2: Minh họa tập hợp bằng biểu đồ Ven. Dạng 4 . Xác định số phần tử của một tập hợp. * Với các tập hợp ít phần tử thì biểu diễn tập hợp rồi đếm số phần tử. – Căn cứ vào các phần tử đã được liệt kê hoặc căn cứ vào tính chất đặc trưng cho các phần tử của tập hợp cho trước, ta có thể tìm được số phần tử của tập hợp đó. – Sử dụng các công thức sau: Tập hợp các số tự nhiên từ đến b có: phần tử. Tập hợp các số chẵn từ số chẵn a đến số chẵn b có: b a 2 1 phần tử. Tập hợp các số lẻ từ số lẻ m đến số lẻ n có: n m 2 1 phần tử. Tập hợp các số tự nhiên từ a đến b hai số kế tiếp cách nhau d đơn vị có: b a d 1 phần tử. Dạng 5 . Tập hợp con. * Giả sử tập hợp A có n phần tử. Ta viết lần lượt các tập hợp con: Không có phần tử nào. Có 1 phần tử. Có 2 phần tử. . . . Có n phần tử. * Muốn chứng minh tập B là con của tập A ta cần chỉ ra mỗi phần tử của B đều thuộc A. * Để viết tập con của A ta cần viết tập A dưới dạng liệt kê phần tử. Khi đó mỗi tập B gồm một số phần tử của A sẽ là tập con của A. * Lưu ý: – Nếu tập hợp A có n phần tử thì số tập hợp con của A là 2 n. – Số phần tử của tập con của A không vượt quá số phần tử của A. – Tập rỗng là tập con của mọi tập hợp.
Chuyên đề thực hiện phép tính bồi dưỡng học sinh giỏi Toán 6 - 7
Tài liệu gồm 37 trang, được biên soạn bởi tác giả Ngô Thế Hoàng (giáo viên Toán trường THCS Hợp Đức, tỉnh Bắc Giang), hướng dẫn giải các dạng toán chuyên đề thực hiện phép tính bồi dưỡng học sinh giỏi Toán 6 – 7, giúp các em học sinh khối lớp 6, lớp 7 ôn tập để chuẩn bị cho các kỳ thi chọn HSG Toán 6, Toán 7 cấp trường, cấp huyện, cấp tỉnh. DẠNG 1: RÚT GỌN. DẠNG 2: TÍNH ĐƠN GIẢN. DẠNG 3: TÍNH TỔNG TỰ NHIÊN. DẠNG 4: TÍNH TỔNG PHÂN SỐ. DẠNG 5: TÍNH TỔNG TỰ NHIÊN DẠNG TÍCH. DẠNG 6: TÍNH TỔNG CÔNG THỨC. DẠNG 7: TÍNH TÍCH. DẠNG 8: TÍNH TỔNG CÙNG SỐ MŨ. DẠNG 9: TỔNG CÙNG CƠ SỐ. DẠNG 10: TÍNH ĐƠN GIẢN. DẠNG 11: TÍNH TỈ SỐ CỦA HAI TỔNG. DẠNG 12: TÍNH GIÁ TRỊ BIỂU THỨC.
Chuyên đề thứ tự thực hiện các phép tính
Tài liệu gồm 15 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề thứ tự thực hiện các phép tính, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 1: Ôn tập và bổ túc về số tự nhiên. Mục tiêu : Kiến thức: + Hiểu được thế nào là một biểu thức. + Nắm được thứ tự thực hiện phép tính. Kĩ năng: + Vận dụng được các quy tắc về thứ tự thực hiện các phép tính trong biểu thức để tính đúng giá trị của biểu thức. I. LÍ THUYẾT TRỌNG TÂM 1. Nhắc lại về biểu thức. Các số được nối với nhau bởi dấu các phép tính (cộng, trừ, nhân, chia, nâng lên lũy thừa) làm thành một biểu thức. Chú ý: + Mỗi số cũng được coi là một biểu thức. + Trong biểu thức có thể có các dấu ngoặc để chỉ thứ tự thực hiện các phép tính. 2. Thứ tự thực hiện các phép tính trong biểu thức. Đối với biểu thức không có dấu ngoặc: Lũy thừa → Nhân và chia → Cộng và trừ. Đối với biểu thức có dấu ngoặc: () → [] → {}. II. CÁC DẠNG BÀI TẬP Dạng 1 : Thực hiện phép tính. Dạng 2 : Tìm x. Dạng 3 : So sánh giá trị của hai biểu thức.
Chuyên đề thực hiện dãy tính và tính nhanh
Nội dung Chuyên đề thực hiện dãy tính và tính nhanh Bản PDF - Nội dung bài viết Chuyên đề thực hiện dãy tính và tính nhanh trong Toán lớp 6A. Kiến thức cần nhớB. Bài toán tự luyệnC. Bài toán qua đề thi HSG Chuyên đề thực hiện dãy tính và tính nhanh trong Toán lớp 6 Tài liệu này bao gồm 104 trang, giới thiệu các kiến thức trọng tâm cần đạt trong việc thực hiện phép tính và tính nhanh. Nó cung cấp hướng dẫn giải các dạng toán và tuyển chọn các bài tập chuyên đề. Tài liệu này có đáp án và lời giải chi tiết, nhằm hỗ trợ học sinh lớp 6 trong quá trình ôn tập thi học sinh giỏi môn Toán. A. Kiến thức cần nhớ Đối với bài toán thực hiện phép tính trong các kì thi học sinh giỏi, học sinh cần nắm vững các kiến thức sau: Công thức tính lũy thừa của số tự nhiên. Một số công thức đặt thừa số chung. Một số công thức tính tổng, bao gồm: Tổng các số hạng cách đều: S = a1 + a2 + a3 + ... + an. Tổng có dạng: S = 1 + a + a2 + a3 + ... + an. Tổng có dạng: S = 1 + a2 + a4 + a6 + ... + a2n. Tổng có dạng: S = a + a3 + a5 + a7 + ... + a2n + 1. Tổng có dạng: S = 1.2 + 2.3 + 3.4 + 4.5 + ... + (n - 1) * n. Tổng có dạng: P = 12 + 22 + 32 + 42 + ... + n2. Tổng có dạng: S = 12 + 32 + 52 + ... + (k - 1)2 (với k là số chẵn và thuộc N). Tổng có dạng: S = a1.a2 + a2.a3 + a3.a4 + a4.a5 + ... + an-1.an. Tổng có dạng: S = 1/a1.a2 + 1/a2.a3 + 1/a3.a4 + 1/a4.a5 + ... + 1/an-1.an. B. Bài toán tự luyện Tài liệu cũng cung cấp các bài toán tự luyện để học sinh tự rèn luyện và nắm vững kiến thức đã được hướng dẫn. C. Bài toán qua đề thi HSG Tài liệu cung cấp các bài toán qua đề thi HSG, giúp học sinh làm quen với các dạng bài toán thực tế và rèn kỹ năng giải quyết bài toán.