Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện Toán 7 năm 2022 - 2023 phòng GDĐT Tiên Du - Bắc Ninh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp huyện môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Tiên Du, tỉnh Bắc Ninh; đề thi hình thức 100% tự luận, thời gian 120 phút (không kể thời gian giao đề), đề thi có đáp án, lời giải chi tiết và thang chấm điểm; kỳ thi được diễn ra vào ngày 22 tháng 02 năm 2023. Trích dẫn Đề học sinh giỏi huyện Toán 7 năm 2022 – 2023 phòng GD&ĐT Tiên Du – Bắc Ninh : + Cho tam giác ABC có AB AC. Tia phân giác của góc A cắt cạnh BC tại điểm I. Trên cạnh AC lấy điểm D sao cho AD = AB. a) Chứng minh rằng BI = ID. b) Tia DI cắt tia AB tại điểm E. Chứng minh rằng IBE IDC. Từ đó suy ra BD // CE. c) Gọi H là trung điểm của EC. Chứng minh AH BD. d) Cho ABC ACB 2. Chứng minh AB + BI = AC. + Thí sinh lựa chọn làm một (chỉ một) câu trong hai câu sau: 1) Cho 2 4 6 8 98 100 A. Chứng minh rằng 1 50 A. 2) Tìm tất cả các số tự nhiên m và n thỏa mãn 2 2021 2020 2022 m n. + Tìm tất cả các sống uyên dương 1 2 n a a a và b (n là số nguyên dương nào đó) thỏa mãn đồng thời hai điều kiện sau?

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn HSG Toán 7 năm 2023 - 2024 phòng GDĐT thành phố Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp thành phố môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Bắc Ninh, tỉnh Bắc Ninh; kỳ thi được diễn ra vào ngày 10 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi chọn HSG Toán 7 năm 2023 – 2024 phòng GD&ĐT thành phố Bắc Ninh : + Cho tam giác ABC vuông tại A B C 2 kẻ AH vuông góc với BC tại H. Trên tia HC lấy điểm D sao cho HD HB. Từ C kẻ đường thẳng vuông góc với đường thẳng AD tại E. a) Tam giác ABD là tam giác gì? Vì sao? b) Chứng minh rằng DE DH HE AC. c) Gọi K là giao điểm của AH và CE, lấy điểm I bất kỳ thuộc đoạn thẳng HE I H I E. Chứng minh rằng 3 2 AC IA IK IC. + Một số nguyên dương được gọi là số may mắn nếu số đó gấp 99 lần tổng tất cả các chữ số của nó. Tìm số may mắn có bốn chữ số. + Cho tam giác ABC vuông tại A, độ dài cạnh huyền bằng 2015. Trong tam giác ABC lấy 2031121 điểm phân biệt bất kỳ. Chứng minh rằng tồn tại ít nhất hai điểm có khoảng cách không lớn hơn 1.