Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Bắc Ninh

Nội dung Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Bắc Ninh Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên môn Toán năm học 2017 - 2018 Đề thi tuyển sinh THPT chuyên môn Toán năm học 2017 - 2018 Đề thi tuyển sinh lớp 10 THPT chuyên môn Toán năm học 2017 - 2018 của sở GD và ĐT Bắc Ninh bao gồm 5 bài toán tự luận, kèm theo lời giải chi tiết. Dưới đây là một số bài toán trong đề: + Cho tam giác vuông có độ dài các cạnh là các số tự nhiên có hai chữ số. Sau khi hoán đổi hai chữ số của cạnh huyền, ta được số đo của một góc vuông. Hãy tính bán kính của đường tròn ngoại tiếp tam giác đó. + Đưa ra 2n+1 số nguyên, trong đó có một số 0 và các số 1, 2, 3, ..., n mỗi số xuất hiện hai lần. Chứng minh rằng với mọi số tự nhiên n, chúng ta luôn có thể sắp xếp 2n+1 số nguyên trên một dãy sao cho với mọi m = 1, 2, ..., n, có đúng m số nằm giữa hai số m. Đề thi này không chỉ đánh giá kiến thức mà còn đòi hỏi sự tổng hợp, logic và khả năng suy luận của thí sinh. Chắc chắn rằng đề thi sẽ đem lại cho các bạn thử thách đầy hào hứng và đồng thời giúp họ phát huy tối đa khả năng của mình trong môn Toán.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh môn Toán (vòng 2) năm 2022 trường THPT chuyên KHTN Hà Nội
Nội dung Đề tuyển sinh môn Toán (vòng 2) năm 2022 trường THPT chuyên KHTN Hà Nội Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (vòng 2) năm 2022 trường THPT chuyên KHTN Hà Nội Đề thi tuyển sinh môn Toán (vòng 2) năm 2022 trường THPT chuyên KHTN Hà Nội Xin chào quý thầy, cô giáo và các em học sinh lớp 9! Sytu hân hạnh giới thiệu đến các bạn đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (vòng 2) năm 2022 của trường THPT chuyên KHTN, Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội. Đề thi bao gồm đáp án và lời giải chi tiết được biên soạn bởi CLB Toán Lim gồm các thành viên: Nguyễn Duy Khương, Nguyễn Hoàng Việt, Trịnh Đình Triển, Trương Mạnh Tuấn, TQĐ, Nguyễn Văn Hoàng, Nguyễn Khang. Trích dẫn một số câu hỏi trong đề tuyển sinh lớp 10 môn Toán (vòng 2) năm 2022 của trường THPT chuyên KHTN – Hà Nội: Cho các điểm A1, A2, ..., A30 nằm trên một đường thẳng sao cho độ dài các đoạn AkAk+1 bằng k (đơn vị dài), với k = 1, 2, ..., 29. Tô màu mỗi đoạn thẳng A1A2, ..., A29A30 bằng 1 trong 3 màu. Chứng minh luôn tồn tại hai số nguyên dương 1 ≤ j < i ≤ 29 sao cho hai đoạn AkAk+1 và AjAj+1 được tô cùng màu và i − j là bình phương của một số nguyên dương. Cho tam giác giác ABC nhọn nội tiếp đường tròn (O), P thay đổi nằm trong tam giác sao cho E, F là hình chiếu của P lên CA, AB, BFEC nội tiếp đường tròn (K). Hãy chứng minh và tính toán các thông số trong trường hợp này. Với a, b, c là những số thực dương thỏa mãn điều kiện 1/a + 1/b + 1/c = 1. Chứng minh một số mệnh đề liên quan đến a, b, c. Hy vọng rằng đề tuyển sinh này sẽ giúp các em học sinh lớp 9 làm quen với dạng bài thi và rèn luyện kỹ năng giải toán một cách hiệu quả. Chúc các em học tốt và đạt kết quả cao trong kỳ thi sắp tới!
Đề tuyển sinh vào môn Toán năm 2022 sở GD ĐT Bình Phước
Nội dung Đề tuyển sinh vào môn Toán năm 2022 sở GD ĐT Bình Phước Bản PDF - Nội dung bài viết Đề thi tuyển sinh Toán năm 2022 sở GD&ĐT Bình Phước Đề thi tuyển sinh Toán năm 2022 sở GD&ĐT Bình Phước Chào đón quý thầy cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến mọi người đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm 2022 của sở Giáo dục và Đào tạo tỉnh Bình Phước. Kỳ thi này sẽ diễn ra vào Chủ Nhật ngày 05 tháng 06 năm 2022. Hãy cùng chúng tôi tìm hiểu chi tiết một số câu hỏi trong đề thi nhé! 1. Tính chiều rộng và chiều dài của khu vườn hình chữ nhật khi biết diện tích là 280m2 và chiều dài lớn hơn chiều rộng 6m. 2. Tính C, AB, BC và diện tích tam giác ABC với tam giác ABC vuông tại A, AC = 12cm, B = 60°. 3. Cho điểm A nằm ngoài đường tròn (O) và vẽ hai tiếp tuyến SA, SB (A, B là các tiếp điểm). Chứng minh các điều sau: - Tứ giác SAOB nội tiếp đường tròn. - SA = SC.SD. - Đường thẳng SC đi qua trung điểm của đoạn thẳng BH, với BH vuông góc với AC tại điểm H. Đó là một số câu hỏi trong đề thi tuyển sinh Toán năm 2022 của sở GD&ĐT Bình Phước. Chúc các em học sinh ôn tập tốt và đạt kết quả cao trong kỳ thi sắp tới!
Đề tuyển sinh vào năm 2022 trường THPT chuyên KHTN Hà Nội
Nội dung Đề tuyển sinh vào năm 2022 trường THPT chuyên KHTN Hà Nội Bản PDF - Nội dung bài viết Đề tuyển sinh vào năm 2022 trường THPT chuyên KHTN Hà Nội Đề tuyển sinh vào năm 2022 trường THPT chuyên KHTN Hà Nội Sytu trân trọng giới thiệu đến quý thầy cô giáo và các em học sinh lớp 9 đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 năm 2022 của trường THPT chuyên Khoa học Tự nhiên, Đại học Quốc gia Hà Nội. Kỳ thi sẽ diễn ra vào Chủ Nhật ngày 05 tháng 06 năm 2022 và đề thi bao gồm đề Toán điều kiện, đề Toán chung và đề Toán vòng 1 Đề thi được biên soạn bởi CLB Toán Lim, gồm các thầy cô: Nguyễn Duy Khương, Nguyễn Hoàng Việt, Trịnh Đình Triển, Khôi Hà, Nguyễn Văn Hoàng và Nguyễn Khang. Đề thi có đáp án và lời giải chi tiết để thí sinh tham khảo. Dưới đây là một số câu hỏi trích dẫn từ đề tuyển sinh: Trên bàn có 8 hộp rỗng, mỗi lần thêm bi vào các hộp theo quy tắc nhất định. Hỏi số lần thêm bi ít nhất để nhận được số bi ở 8 hộp đều là 8 số tự nhiên liên tiếp? Cho hình chữ nhật ABCD nội tiếp trong đường tròn (O). Chứng minh rằng BE cắt CF tại một điểm trên đường tròn (O), và điểm D, M, N thẳng hàng. Tìm tất cả các cặp số nguyên (x;y) thỏa mãn đẳng thức: 25y^2 + 354x + 60 = 36x^2 + 305y + (5y − 6x)^2022. Hãy chuẩn bị kỹ lưỡng và tự tin để đối phó với những thách thức trên kỳ thi tuyển sinh sắp tới! Chúc các em học sinh thành công!
Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Bắc Giang
Nội dung Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Bắc Giang Bản PDF - Nội dung bài viết Thông báo về Đề tuyển sinh THPT môn Toán năm học 2022 - 2023 Thông báo về Đề tuyển sinh THPT môn Toán năm học 2022 - 2023 Chào mừng quý thầy cô và các em học sinh lớp 9! Sytu xin giới thiệu đến các bạn Đề thi chính thức tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 - 2023 do Sở Giáo dục và Đào tạo tỉnh Bắc Giang tổ chức. Đề thi bao gồm 20 câu trắc nghiệm (tương ứng với 3 điểm) và 5 câu tự luận (tương ứng với 7 điểm), thời gian làm bài là 120 phút (không tính thời gian giao đề). Kỳ thi sẽ diễn ra vào thứ Bảy ngày 4 tháng 6 năm 2022.