Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Lào Cai

Nội dung Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Lào Cai Bản PDF - Nội dung bài viết Đề Thi Tuyển Sinh Lớp 10 THPT Môn Toán Năm 2022-2023 Sở GD&ĐT Lào Cai Đề Thi Tuyển Sinh Lớp 10 THPT Môn Toán Năm 2022-2023 Sở GD&ĐT Lào Cai Sytu xin gửi đến quý thầy cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022-2023 của Sở Giáo dục và Đào tạo tỉnh Lào Cai. Kỳ thi này sẽ diễn ra vào thứ Sáu ngày 10 tháng 06 năm 2022. Đề thi bao gồm đáp án và lời giải chi tiết, được thực hiện bởi Trung tâm toán học Pytago. Trích dẫn một số câu hỏi từ đề tuyển sinh lớp 10 THPT môn Toán năm 2022-2023 của Sở GD&ĐT Lào Cai: 1. Hai ô tô xuất phát cùng một thời điểm từ địa điểm A đến địa điểm B với vận tốc mỗi ô tô không đổi. Sau 1 giờ, quãng đường đi được của ô tô thứ nhất nhiều hơn quãng đường đi được của ô tô thứ hai là 5km. Quãng đường đi được của ô tô thứ hai sau 3 giờ nhiều hơn quãng đường đi được của ô tô thứ nhất sau 2 giờ là 35km. Hãy tính vận tốc mỗi ô tô. 2. Chọn ngẫu nhiên một số trong các số tự nhiên từ 1 đến 10. Tính xác suất để số được chọn là số chia hết cho 5. 3. Cho đường tròn (O) và điểm M ngoài đường tròn. Qua M, kẻ hai tiếp tuyến phân biệt MA, MB đến đường tròn (A, B là các tiếp điểm). a) Chứng minh MAOB là tứ giác nội tiếp. b) Đường thẳng MO cắt đường tròn (O) lần lượt tại hai điểm C, D phân biệt sao cho MC < MD. Chứng minh: MA · DA = MD · AC c) Đường thẳng BO cắt đường tròn (O) tại điểm thứ hai là E. Kẻ AI vuông góc với BE tại I. Đường thẳng ME cắt AI tại K, đường thẳng MO cắt AB tại H. Chứng minh hai đường thẳng HK và BE song song. Đề thi này sẽ giúp các em học sinh lớp 9 ôn tập và chuẩn bị tốt cho kỳ thi tuyển sinh vào lớp 10. Hy vọng rằng các em sẽ có được kết quả tốt trong kỳ thi sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Quảng Ninh
Nội dung Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Quảng Ninh Bản PDF - Nội dung bài viết Đề tuyển sinh vào môn Toán năm 2023 - 2024 sở GD&ĐT Quảng Ninh Đề tuyển sinh vào môn Toán năm 2023 - 2024 sở GD&ĐT Quảng Ninh Xin chào quý thầy cô và các em học sinh! Hôm nay, chúng ta sẽ cùng điểm qua đề thi chính thức của kỳ thi tuyển sinh vào lớp 10 THPT môn Toán cho năm học 2023 - 2024 của sở Giáo dục và Đào tạo tỉnh Quảng Ninh. Kỳ thi này sẽ diễn ra vào sáng thứ Sáu ngày 02 tháng 06 năm 2023. Trích dẫn một số câu hỏi từ đề Tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 của sở GD&ĐT Quảng Ninh: 1. Hai địa điểm A và B cách nhau 280 km. Hai ô tô cùng xuất phát từ A đến B. Biết vận tốc của xe thứ nhất lớn hơn vận tốc của xe thứ hai 10 km/h và xe thứ nhất đến B sớm hơn xe thứ hai 30 phút. Hãy tính vận tốc của mỗi xe? 2. Cho nửa đường tròn tâm O, đường kính BC. Trên nửa đường tròn (O) lấy điểm A, gọi H là hình chiếu của A trên BC. Trên cung AC của nửa đường tròn (O) lấy điểm D, gọi E là hình chiếu của A trên BD, I là giao điểm của hai đường thẳng AH và BD. Hãy chứng minh các công thức liên quan đến các đường thẳng trên. 3. Một người thợ cơ khí cần cắt vừa đủ một cây sắt dài 100 dm thành các đoạn để hàn lại thành khung một hình lập phương và một hình hộp chữ nhật. Biết hình hộp chữ nhật có chiều dài gấp 6 lần chiều rộng và chiều cao bằng chiều rộng. Hãy tính độ dài các đoạn sắt sao cho tổng thể tích của hai hình thu được là nhỏ nhất? Chúc quý thầy cô và các em học sinh ôn tập tốt và thành công trong kỳ thi sắp tới!
Đề tuyển sinh THPT môn Toán năm 2023 2024 sở GD ĐT Phú Yên
Nội dung Đề tuyển sinh THPT môn Toán năm 2023 2024 sở GD ĐT Phú Yên Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2023 - 2024 sở GD&ĐT Phú Yên Đề tuyển sinh THPT môn Toán năm 2023 - 2024 sở GD&ĐT Phú Yên Chúng ta hãy cùng tìm hiểu về đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 - 2024 tại sở Giáo dục và Đào tạo tỉnh Phú Yên. Đề thi bao gồm 30% câu hỏi trắc nghiệm (12 câu) và 70% câu hỏi tự luận (4 câu), thời gian làm bài là 120 phút. Kỳ thi sẽ diễn ra vào thứ Năm ngày 01 tháng 06 năm 2023. Trích dẫn một số câu hỏi trong đề tuyển sinh: Cho hai hàm số \( y = \frac{1}{2}x^2 \) và \( y = ax + b \). Tìm các hệ số a, b biết đường thẳng \( y = ax + b \) đi qua điểm M(-2;-2) và N(4;1). Giải bài toán: Một khu đất hình chữ nhật có tỷ số hai kích thước là 2/3. Người ta làm một sân bóng đá mini 5 người ở giữa, chừa lối đi xung quanh (lối đi thuộc khu đất). Lối đi rộng 2 m và diện tích 224 m2. Tính các kích thước của khu đất. Cho tam giác ABC vuông tại A, có AB = 3 cm, AC = 4 cm. Đường tròn tâm B bán kính BA và đường tròn tâm C bán kính CA cắt nhau tại điểm thứ hai D. Tính độ dài đoạn AD. Hãy thử sức và cố gắng giải quyết những bài toán thú vị này trong đề tuyển sinh môn Toán năm 2023 - 2024 tại Phú Yên nhé!
Đề tuyển sinh môn Toán (không chuyên) năm 2023 2024 sở GD ĐT Bạc Liêu
Nội dung Đề tuyển sinh môn Toán (không chuyên) năm 2023 2024 sở GD ĐT Bạc Liêu Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (không chuyên) năm 2023 - 2024 sở GD ĐT Bạc Liêu Đề tuyển sinh môn Toán (không chuyên) năm 2023 - 2024 sở GD ĐT Bạc Liêu Xin chào quý thầy cô và các em học sinh! Sytu hân hạnh giới thiệu đến quý vị đề thi tuyển sinh vào lớp 10 THPT môn Toán (không chuyên) năm học 2023 - 2024 của sở Giáo dục và Đào tạo tỉnh Bạc Liêu. Kỳ thi sẽ diễn ra vào ngày 31 tháng 05 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2023 - 2024 sở GD&ĐT Bạc Liêu: + Tìm hệ số a để đồ thị hàm số \(y = ax^2\) đi qua điểm M(-1;2). Vẽ đồ thị của hàm số \(y = ax^2\) với giá trị a vừa tìm được. + Cho phương trình bậc hai \(x^2 - 2x + m - 2 = 0\) (1) với m là tham số. a) Xác định các hệ số a, b, c của phương trình (1). b) Giải phương trình (1) khi m = -1. c) Tìm giá trị của m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn: \(3(x_1^2 + x_2^2) + x_1^2x_2^2 = 11\). + Trên đường tròn tâm O, đường kính AB = 2R, lấy hai điểm C, D sao cho CD vuông góc với B tại H (H thuộc đoạn OA, H khác O và A). Gọi M là điểm trên đoạn CD (M khác C và D, CM > DM), E là giao điểm của AM với đường tròn (O) (E khác A), N là giao điểm của hai đường thẳng BE và CD. a) Chứng minh tứ giác MEBH nội tiếp đường tròn. b) Chứng minh: \(NC \times ND = NB \times NE\). c) Khi AC = R, xác định vị trí của điểm M để \(2AM + AE\) đạt giá trị nhỏ nhất. Hy vọng rằng đề thi sẽ giúp các em chuẩn bị tốt cho kỳ thi sắp tới. Chúc quý thầy cô và các em học sinh thành công! Xin cám ơn!
Đề tuyển sinh môn Toán (chuyên) năm 2023 trường THPT chuyên ĐHSP Hà Nội
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2023 trường THPT chuyên ĐHSP Hà Nội Bản PDF - Nội dung bài viết Đề thi tuyển sinh Toán (chuyên) trường THPT chuyên ĐHSP Hà Nội Đề thi tuyển sinh Toán (chuyên) trường THPT chuyên ĐHSP Hà Nội Sytu xin gửi đến quý thầy cô và các em học sinh đề thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm 2023 của trường THPT chuyên Đại học Sư Phạm Hà Nội. Đề thi này dành riêng cho thí sinh muốn chuyên học Toán và Tin học ở vòng 2 của kỳ thi tuyển sinh. Trích đề thi: 1. Cho tam giác ABC. Đường tròn (I) nội tiếp tam giác ABC tiếp xúc với các cạnh BC, CA, AB tại D, E, F. Hai đường thẳng MG, NE cắt nhau tại P. Chứng minh rằng: a) Đường EG song song với đường MN. b) Điểm P thuộc đường tròn (I). 2. Bảy lục giác đều được sắp xếp và tô màu bằng hai màu trắng và đen như Hình 1. Mỗi lần chọn một lục giác đều, đổi màu của lục giác đó và tất cả các lục giác chung cạnh với nó (từ trắng thành đen và ngược lại). Chứng minh rằng không thể tô được các lục giác như Hình 2 dù bao nhiêu lần thực hiện cách làm trên. 3. Chứng minh rằng tồn tại số nguyên dương n > 102023 sao cho tổng tất cả các số nguyên tố nhỏ hơn n là số nguyên tố cùng nhau với n.