Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 12 năm 2018 - 2019 trường M.V Lômônôxốp - Hà Nội lần 5

Chiều thứ Hai ngày 03 tháng 06 năm 2019, trường THPT M.V Lômônôxốp – Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán năm học 2018 – 2019 lần thứ 5 dành cho học sinh khối 12, kỳ thi nhằm kiểm tra kiến thức Toán 12 trong quá trình ôn tập hướng đến kỳ thi THPT Quốc gia môn Toán năm 2019. Đề khảo sát Toán 12 năm 2018 – 2019 trường M.V Lômônôxốp – Hà Nội lần 5 có mã đề 195, đề gồm 06 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian học sinh làm bài 90 phút, đề có cấu trúc khá giống với đề tham khảo THPT Quốc gia môn Toán năm 2019 do Bộ Giáo dục và Đào tạo đề xuất, đề thi có đáp án. Trích dẫn đề khảo sát Toán 12 năm 2018 – 2019 trường M.V Lômônôxốp – Hà Nội lần 5 : + Bác An tiết kiệm được 500 triệu đồng để dưỡng già. Bác quyết định gửi vào ngân hàng với lãi suất 0,65%/tháng theo thể thức lãi kép. Mỗi tháng bác rút ra 5 triệu để chi tiêu (vào ngày ngân hàng tính lãi). Hỏi sau 5 năm, số tiền còn lại trong ngân hàng của bác gần nhất với số nào sau đây? (biết lãi suất ngân hàng không thay đổi trong 5 năm đó). [ads] + Cho hình vuông ABCD. Trên cạnh AB lấy 3 điểm khác A, B. Trên cạnh BC lấy 5 điểm khác B, C. Trên cạnh CD lấy 7 điểm khác C, D. Trên cạnh DA lấy 8 điểm khác D, A. Gọi S tổng số tứ giác tạo thành khi lấy 4 điểm trong 23 điểm nói trên. Khi đó S bằng? + Trong mặt phẳng (P) cho tam giác OAB đều có cạnh bằng 5. Trên đường thẳng Δ vuông góc với (P) tại O lấy điểm C sao cho OC = x. Gọi E, F lần lượt là hình chiếu của A trên BC và OB. Đường thẳng EF và đường thẳng Δ cắt nhau tại D. Thể tích khối tứ diện ABCD đạt giá trị nhỏ nhất khi x = a√2/b với a/b là phân số tối giản. Tính T = a + 3b.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử TN THPT 2024 lần 1 môn Toán trường THPT Yên Châu - Sơn La
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2023 – 2024 lần 1 môn Toán trường THPT Yên Châu, tỉnh Sơn La; đề thi có đáp án trắc nghiệm mã đề 000 101 102 103 104 105 106 107 108 và lời giải chi tiết các bài toán vận dụng cao. Trích dẫn Đề thi thử TN THPT 2024 lần 1 môn Toán trường THPT Yên Châu – Sơn La : + Cho hàm số bậc hai y fx có đồ thị (P) và đường thẳng d cắt (P) tại hai điểm như trong hình vẽ bên. Biết rằng hình phẳng giới hạn bởi (P) và d có diện tích 125 9 S. Tích phân 6 1 25 d x f bằng? + Cho khối lăng trụ ABC A B C có AC′ = 8, diện tích của tam giác ABC bằng 9 và đường thẳng AC′ tạo với mặt phẳng (ABC) một góc 60°. Thể tích của khối lăng trụ đã cho bằng? + Cho hình nón có chiều cao bằng 3. Một mặt phẳng (α) đi qua đỉnh hình nón và cắt hình nón theo một thiết diện là tam giác đều, góc giữa trục của hình nón và mặt phẳng (α) là 45°. Thể tích của hình nón đã cho bằng?
Đề thi thử TN THPT 2024 môn Toán lần 2 sở GDĐT Bạc Liêu
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2024 môn Toán lần 2 sở Giáo dục và Đào tạo tỉnh Bạc Liêu. Trích dẫn Đề thi thử TN THPT 2024 môn Toán lần 2 sở GD&ĐT Bạc Liêu : + Cho hàm số y = f(x) có đạo hàm liên tục trên R và có đồ thị y = f'(x) như hình vẽ. Đặt g(x) = f(x – m) – 1/2(x – m – 1)2 + 2024 với m là tham số thực. Gọi S là tập hợp các giá trị nguyên dương của tham số m để hàm số y = g(x) đồng biến trên khoảng (5;6). Tổng tất cả các phần tử trong S bằng? + Trong không gian Oxyz, cho mặt cầu (S): (x – 1)2 + (y – 2)2 + (z – 3)2 = 9 và điểm A(0;0;2). Mặt phẳng (P) đi qua điểm A và cắt khối cầu (S) theo giao tuyến là một hình tròn có diện tích nhỏ nhất. Phương trình mặt phẳng (P) là? + Có bao nhiêu giá trị nguyên dương của tham số m để bất phương trình nghiệm đúng với mọi x?
Đề thi thử tốt nghiệp THPT năm 2024 lần 1 môn Toán sở GDĐT Lạng Sơn
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2024 lần 1 môn Toán sở Giáo dục và Đào tạo tỉnh Lạng Sơn; kỳ thi được diễn ra vào thứ Ba ngày 27 tháng 02 năm 2024; đề thi có đáp án trắc nghiệm mã đề 101 102 103 104 105 106 107 108 và lời giải chi tiết các bài toán vận dụng – vận dụng cao. Ma trận Đề thi thử tốt nghiệp THPT năm 2024 lần 1 môn Toán sở GD&ĐT Lạng Sơn : + Bài toán chỉ sử dụng tổ hợp. + Xác suất của bài toán chọn nhóm. + Giới hạn phân thức có bậc tử bằng bậc mẫu. + Góc giữa cạnh bên với mặt đáy. + KC từ chân đường cao đến mặt xiên trong hình chóp. + Tìm cực trị của hàm số khi biết đồ thị hàm số. + Tìm cực trị của hàm số khi biết BBT. + Tìm m để hàm số đạt cực trị tại 1 điểm x0 cho trước. + Tìm số điểm cực trị của hàm số |f(u)| khi biết đồ thị, BBT f’(x). + Tìm tiệm cận f(x) dựa vào BBT f(x). + Tìm đường tiệm cận, số đường TC của hs. + Nhận dạng BBT hàm số bậc 3. + Tìm tọa độ giao điểm của đồ thị hai hs khi biết f(x) và g(x). + Tìm số nghiệm của pt f(x) = a khi biết đồ thị, BBT f(x). + Tập xác định của hàm số lũy thừa có số mũ hữu tỷ. + Dùng công thức biến đổi cơ số logarit rút gọn biểu thức. + Tính đạo hàm của hàm số logarit. + Tìm Min, Max của biểu thức khi có đk f(u) = f(v) chứa logarit. + Tìm số giá trị nguyên của y để PT Loga có nghiệm thỏa mãn đk bằng PP đánh giá. + GBPT Mũ cơ bản. + GBPT Logarit cơ bản. + GBPT Loga dạng tích. + Nguyên hàm cơ bản của hàm số đa thức. + Nguyên hàm cơ bản của hàm lượng giác. + Định nghĩa của tích phân. + Tính chất của tích phân. + Tích phân của hàm ẩn bằng PP từng phần. + Tích phân của hàm ẩn bằng tạo ra công thức đạo hàm tích, thương. + Biết f’(x), tính tích phân f(x). + Ý nghĩa hình học của tích phân. + Tìm khoảng đơn điệu của hàm số khi biết f’(x), BXD f’(x). + Xét tính đơn điệu của hàm số f(x) khi biết đồ thị, BBT f’(x). + Áp dụng công thức tính thể tích khối chóp. + Áp dụng công thức tính thể tích khối lăng trụ. + Tính chiều cao, khoảng cách bằng thể tích. + Thể tích khối lăng trụ đứng có góc giữa hai mp. + Tính V, Sxq hoặc Stp khi biết R, h, l. + Tính Sxq hoặc Stp khi biết R và h. + Tính V, S khi biết R. + Bài toán kết hợp hình cầu với hình trụ. + Xác định tọa độ vectơ qua phép cộng, trừ vectơ. + Tính độ dài đoạn thẳng khi biết hai đầu mút, độ dài vectơ. + Xác định tọa độ tâm, R, S, V của MC khi biết PTMC. + Viết PTMC khi biết tâm và đi qua 1 điểm. + Nhận diện phương trình mặt cầu. + Xác định VTPT khi biết PTMP. + Nhận diện điểm thuộc MP. + Viết PTMP trung trực của đoạn thẳng. + Tính KC từ điểm đến MP. + Viết PTMP chắn hai đoạn theo tỉ số.
Đề thi tháng lần 2 Toán 12 năm 2023 - 2024 trường THPT Ngô Sĩ Liên - Bắc Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi tháng lần 2 môn Toán 12 năm học 2023 – 2024 trường THPT Ngô Sĩ Liên, tỉnh Bắc Giang; kỳ thi được diễn ra vào ngày 30 tháng 12 năm 2024; đề thi có đáp án trắc nghiệm mã đề 101. Trích dẫn Đề thi tháng lần 2 Toán 12 năm 2023 – 2024 trường THPT Ngô Sĩ Liên – Bắc Giang : + Trong không gian Oxyz cho tứ diện ABCD có A B C D. Trên các cạnh AB AC AD lần lượt lấy các điểm BCD sao cho 4 AB AC AD AB AC AD. Viết phương trình mặt phẳng BCD biết tứ diện A B C D có thể tích nhỏ nhất. + Một khối trụ có đường cao bằng 5, chu vi của thiết diện qua trục gấp 3 lần đường kính đáy. Thể tích của khối trụ bằng? + Cho hàm số 4 2 fx 32 4. Có bao nhiêu giá trị nguyên của tham số m sao cho ứng với mỗi m tổng giá trị các nghiệm phân biệt thuộc khoảng (−4;1) của phương trình 2 fx m 4 5 bằng -8?