Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm định Toán 12 lần 2 năm 2018 - 2019 trường THPT Yên Phong 2 - Bắc Ninh

Thứ Tư ngày 20 tháng 03 năm 2019, thầy và trò trường THPT Yên Phong số 2, tỉnh Bắc Ninh tổ chức kỳ thi kiểm chất lượng lần thứ hai môn Toán 12 năm học 2018 – 2019, kỳ thi nhằm đánh giá tổng quát chất lượng môn Toán của học sinh khối 12 trước khi các em bước vào kỳ thi THPT Quốc gia môn Toán năm học 2018 – 2019. Đề kiểm định Toán 12 lần 2 năm 2018 – 2019 trường THPT Yên Phong 2 – Bắc Ninh có mã đề 121 gồm 05 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, học sinh làm bài thi Toán trong 90 phút, nội dung đề tập trung chủ yếu vào chương trình Toán 12, ngoài ra có một số ít các bài toán về xác suất, dãy số … trong chương trình Toán 11, đề thi có đáp án. [ads] Trích dẫn đề kiểm định Toán 12 lần 2 năm 2018 – 2019 trường THPT Yên Phong 2 – Bắc Ninh : + Khẳng định nào sau đây đúng? A. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau. B. Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau. C. Hai mặt phẳng song song khi và chỉ khi góc giữa chúng bằng 0 độ. D. Hai đường thẳng trong không gian cắt nhau khi và chỉ khi góc giữa chúng lớn hơn 0 độ và nhỏ hơn 90 độ. + Trong không gian, cho hình chữ nhật ABCD có AB = 1 và AD = 2 . Gọi M, N lần lượt là trung điểm của AD và BC. Quay hình chữ nhật đó xung quanh trục MN, ta được một hình trụ. Tính diện tích toàn phần Stp của hình trụ đó. + Gọi S là tập tất cả các giá trị của x ∈ [0;100] để ba số sinx, (cosx)^2, sin3x theo thứ tự đó lập thành cấp số cộng. Tính tổng tất cả các phần tử của tập S.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát chất lượng Toán 12 năm 2021 - 2022 sở GDĐT Phú Thọ
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng học sinh môn Toán 12 THPT năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Phú Thọ (mã đề 102); kỳ thi được diễn ra vào ngày … tháng 05 năm 2022. Trích dẫn đề khảo sát chất lượng Toán 12 năm 2021 – 2022 sở GD&ĐT Phú Thọ : + Trong không gian Oxyz, cho hai điểm A(2;-2:6), B(3;3;-9) và mặt phẳng (P): 2x + 2y – z – 12 = 0. Điểm M di động trên (P) sao cho MA và MB luôn tạo với (P) các góc bằng nhau. Biết M luôn thuộc một đường tròn cố định. Tung độ của tâm đường tròn đó bằng? + Cho hàm số y = f(x) có đạo hàm cấp hai liên tục trên R. Hình vẽ bên dưới là đồ thị hàm số y = f'(x) trên (-vc;-2], đồ thị hàm số y = f(x) trên đoạn [-2;3] và đồ thị hàm số y = f”(x) trên [3;+vc). Số điểm cực trị tối đa của hàm số y = f(x) là? + Cho hàm số f(x) = ax4 + bx2 + c có đồ thị như hình vẽ. Biết miền tô đậm có diện tích bằng 4/15 và điểm B có hoành độ bằng -1. Số giá trị nguyên của tham số m thuộc đoạn [-3;3] để hàm số y = f(m – 3^x) có đúng một điểm cực trị là?
Đề đánh giá chất lượng Toán 12 năm 2021 - 2022 trường Đại học Hồng Đức - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi đánh giá chất lượng môn Toán 12 năm học 2021 – 2022 trường Đại học Hồng Đức, tỉnh Thanh Hóa; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề đánh giá chất lượng Toán 12 năm 2021 – 2022 trường Đại học Hồng Đức – Thanh Hóa : + Cho hình nón đỉnh S có độ dài đường cao là R và đáy là đường tròn tâm O bán kính R. Gọi (d) là tiếp tuyến của đường tròn đáy tại A và (P) là mặt phẳng chứa SA và (d). Mặt phẳng (Q) thay đổi qua S cắt đường tròn O tại hai điểm C, D sao cho CD = √3R. Gọi α là góc tạo bởi (P) và (Q). Tính giá trị lớn nhất của cos α. + Cho hàm số f(x) = x3 + ax2 + bx + c (a, b, c ∈ R) có hai điểm cực trị là −1 và 1. Gọi y = g(x) là hàm số bậc hai có đồ thị cắt trục hoành tại hai điểm có hoành độ trùng với các điểm cực trị của f(x), đồng thời có đỉnh nằm trên đồ thị của f(x) với tung độ bằng 2. Diện tích hình phẳng giới hạn bởi hai đường y = f(x) và y = g(x) gần với giá trị nào nhất dưới đây? + Cho hàm đa thức y = fx2 + 2x có đồ thị cắt trục Ox tại 5 điểm phân biệt như hình vẽ. Hỏi có bao nhiêu giá trị của tham số m với 2022m ∈ Z để hàm số g (x) = fx2 − 2 |x − 1| − 2x + m có 9 điểm cực trị?
Đề khảo sát chất lượng Toán 12 (đợt 2) năm 2021 - 2022 sở GDĐT Thanh Hóa
Nhằm giúp các em học sinh lớp 12 rèn luyện để hướng đến kỳ thi tốt nghiệp Trung học Phổ thông năm 2022, sáng thứ Ba ngày 26 tháng 04 năm 2022, sở Giáo dục và Đào tạo tỉnh Thanh Hóa tổ chức kỳ thi khảo sát chất lượng học sinh lớp 12 môn Toán năm học 2021 – 2022 lần thứ hai. Đề khảo sát chất lượng Toán 12 (đợt 2) năm 2021 – 2022 sở GD&ĐT Thanh Hóa mã đề 101 gồm 06 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút (không kể thời gian giáo viên coi thi phát đề). Trích dẫn đề khảo sát chất lượng Toán 12 (đợt 2) năm 2021 – 2022 sở GD&ĐT Thanh Hóa : + Trên tập hợp các số phức, xét phương trình z2 – 2z – m + 2 = 0 (m là tham số thực). Gọi T là tập hợp các giá trị của m để phương trình trên có hai nghiệm phân biệt được biểu diễn hình học bởi hai điểm A và B trên mặt phẳng tọa độ sao cho diện tích tam giác ABC bằng 2/2 với C(-1;1). Tổng các phần tử trong T bằng? + Cho hình trụ có O và O’ là tâm của hai đáy. Xét hình chữ nhật ABCD có A và B cùng thuộc đường tròn (O) và C và D cùng thuộc đường tròn (O’) sao cho AB = 3/3, BC = 6; đồng thời mặt phẳng (ABCD) tạo với mặt phẳng đáy hình trụ góc 60°. Thể tích khối trụ bằng? + Trong không gian Oxyz, cho mặt phẳng (P): x + y – 2z + 10 = 0 và hai điểm A(1;-1;2), B(2;0;-4). Gọi M(a;b;c) là điểm thuộc đoạn thẳng AB sao cho luôn tồn tại hai mặt cầu có bán kính R = 6 tiếp xúc với mặt phẳng (P), đồng thời tiếp xúc với đoạn thẳng AB tại M. Gọi T = [m;n) là tập giá trị của biểu thức 25a2 + b2 + 2c2. Tổng m + n bằng?
Đề khảo sát chất lượng lần 2 Toán 12 năm 2021 - 2022 sở GDĐT Hải Dương
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng lần 2 môn Toán 12 năm học 2021 – 2022 sở Giáo dục và Đào tạo UBND tỉnh Hải Dương; kỳ thi được diễn ra vào lúc 19h15 ngày 18 tháng 04 năm 2022 theo hình thức thi trực tuyến (thi online trên máy tính / điện thoại). Trích dẫn đề khảo sát chất lượng lần 2 Toán 12 năm 2021 – 2022 sở GD&ĐT Hải Dương : + Cho đồ thị hai hàm số y = f(x) và y = g(x) như hình vẽ bên dưới. Biết đồ thị của hàm số y = f(x) là một Parabol đỉnh I có tung độ bằng -1/2 và y = g(x) là một hàm số bậc ba. Hoành độ giao điểm của hai đồ thị là x1, x2, x3 thỏa mãn x1.x2.x3 = -6. Diện tích hình phẳng giới hạn bởi hai đồ thị hàm số y = f(x) và y = g(x) gần nhất với giá trị nào dưới đây? + Từ một miếng tôn hình tròn bán kính 2m, người ta cắt ra một hình chữ nhật rồi uốn thành mặt xung quanh của một chiếc thùng phi hình trụ như hình vẽ bên dưới. Để thể tích thùng lớn nhất thì diện tích phần tôn bị cắt bỏ gần nhất với giá trị nào sau đây? + Cho lăng trụ ABC.A’B’C’ có thể tích là V. M N P là các điểm lần lượt nằm trên các cạnh AM 1 BN AA’ 3′ BB’ СР AA’ BB’ CC’ sao cho x y. Biết thể tích khối đa diện ABC.MNP CC 2V bằng? Giá trị lớn nhất của x.y bằng?