Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi Olympic Toán 7 năm 2022 - 2023 phòng GDĐT Thanh Oai - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Thanh Oai, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 12 tháng 04 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề thi Olympic Toán 7 năm 2022 – 2023 phòng GD&ĐT Thanh Oai – Hà Nội : + Cho ABC vuông tại A, M là trung điểm của BC, trên tia đối của tia MA, lấy điểm D sao cho AM = MD 1) Chứng minh: AB // CD và AM 1 2 BC. 2) Gọi I và K lần lượt là chân đường vuông góc hạ từ B và C xuống AD, N là chân đường vuông góc hạ từ M xuống AC. a) Chứng minh: IM = MK b) Chứng minh: KN < MC b) ABC thỏa mãn điều kiện gì để AI = IM = MK = KD? + Cho biết 20 công nhân làm xong một đoạn đường hết 60 ngày. Hỏi 15 công nhân làm đoạn đường đó thì hết bao nhiêu ngày? (Giả sử năng suất làm việc của mỗi công nhân là như nhau). + Cho ΔABC có cạnh AB = 1cm và cạnh BC = 4cm. Tính độ dài cạnh AC biết độ dài cạnh AC là một số nguyên. Đại lượng x tỉ lệ thuận với đại lượng y theo hệ số tỉ lệ là 1 2 thì đại lượng y tỉ lệ thuận với đại lượng x theo hệ số tỉ lệ là?

Nguồn: toanmath.com

Đọc Sách

Đề giao lưu HSG Toán 7 năm 2017 - 2018 phòng GDĐT Vĩnh Bảo - Hải Phòng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu HSG Toán 7 năm 2017 – 2018 phòng GD&ĐT Vĩnh Bảo – Hải Phòng; đề thi có đáp án + lời giải chi tiết + bảng hướng dẫn chấm điểm. Trích dẫn đề giao lưu HSG Toán 7 năm 2017 – 2018 phòng GD&ĐT Vĩnh Bảo – Hải Phòng : + Cho tam giác ABC cân tại A, BH vuông góc AC tại H. Trên cạnh BC lấy điểm M bất kì (M khác B và C). Gọi D, E, F là chân đường vuông góc hạ từ M đến AB, AC, BH. a) Chứng minh: ∆DBM = ∆FMB. b) Chứng minh khi M chạy trên cạnh BC thì tổng MD + ME có giá trị không đổi. c) Trên tia đối của tia CA lấy điểm K sao cho CK = EH. Chứng minh BC đi qua trung điểm của đoạn thẳng DK. + Cho tam giác ABC (AB < AC, B = 60). Hai tia phân giác AD (D BC) và CE (E AB) của ABC cắt nhau ở I. Chứng minh IDE cân. + Cho hai đa thức: f(x) và g(x). Xác định hệ số a;bcủa đa thức g(x) biết nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x).
Đề khảo sát HSG Toán 7 năm 2017 - 2018 trường THCS Vũ Phạm Khải - Ninh Bình
Đề khảo sát HSG Toán 7 năm 2017 – 2018 trường THCS Vũ Phạm Khải – Ninh Bình có đáp án và lời giải chi tiết, kỳ thi được diễn ra vào ngày 12 tháng 03 năm 2018. Trích dẫn đề khảo sát HSG Toán 7 năm 2017 – 2018 trường THCS Vũ Phạm Khải – Ninh Bình : + Nhà trường dự định chia vở viết cho 3 lớp 7A, 7B, 7C theo tỉ lệ số học sinh là 7:6:5. Nhưng sau đó vì có học sinh thuyển chuyển giữa 3 lớp nên phải chia lại theo tỉ lệ 6:5:4. Như vậy có lớp đã nhận được ít hơn theo dự định 12 quyển vở. Tính số vở mỗi lớp nhận được. + Gọi f là một hàm xác định trên tập hợp các số nguyên và thỏa mãn ba điều kiện sau: f(0) ≠0; f(1)=3; f(x)f(y)=f(x+y)+f(x-y) với mọi x, y. Tính giá trị của f(7). + Ba phân số có tổng bằng 213 70, các tử của chúng tỉ lệ với 3; 4; 5, các mẫu của chúng tỉ lệ với 5; 1; 2. Tìm ba phân số đó.
Đề giao lưu HSG Toán 7 năm 2017 - 2018 trường THCS Nguyễn Chích - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu HSG Toán 7 năm 2017 – 2018 trường THCS Nguyễn Chích – Thanh Hóa; đề thi có đáp án + lời giải + thang điểm. Trích dẫn đề giao lưu HSG Toán 7 năm 2017 – 2018 trường THCS Nguyễn Chích – Thanh Hóa : + Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của của tia MA lấy điểm E sao cho ME = MA. Chứng minh rằng: a) AC = EB và AC // BE. b) Gọi I là một điểm trên AC; K là một điểm trên EB sao cho AI = EK. Chứng minh ba điểm I, M, K thẳng hàng. c) Từ E kẻ EH BC H BC. Biết HBE = 50o; MEB = 25o. Tính HEM và BME. + Tìm hai số nguyên dương x và y biết rằng tổng, hiệu và tích của chúng lần lượt tỉ lệ nghịch với 35; 210;12. + Tính giá trị biểu thức A.
Đề giao lưu học sinh giỏi Toán 7 năm 2017 - 2018 phòng GDĐT thành phố Thái Nguyên
Đề giao lưu học sinh giỏi Toán 7 năm 2017 – 2018 phòng GD&ĐT thành phố Thái Nguyên