Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chứng minh tứ giác nội tiếp đường tròn

Tài liệu gồm 19 trang, hướng dẫn phương pháp giải bài toán chứng minh tứ giác nội tiếp đường tròn, đây là dạng toán thường gặp trong chương trình Toán 9 và trong các đề tuyển sinh vào lớp 10 môn Toán. 1. Kiến thức cơ bản : Tứ giác nội tiếp đường tròn là tứ giác có bốn đỉnh nằm trên một đường tròn. Đường tròn đó được gọi là đường tròn ngoại tiếp tứ giác. 2. Các phương pháp chứng minh tứ giác nội tiếp đường tròn : + Phương pháp 1: Chứng minh bốn đỉnh của tứ giác cùng cách đều một điểm. + Phương pháp 2: Chứng minh tứ giác có hai góc đối diện bù nhau (tổng hai góc đối diện bằng 180 độ). + Phương pháp 3: Chứng minh hai đỉnh cùng nhìn đoạn thẳng tạo bởi hai điểm còn lại hai góc bằng nhau. Các bài toán trong tài liệu được sắp xếp theo các mức độ nhận thức: nhận biết, thông hiểu, vận dụng thấp và vận dụng cao; có đáp án và lời giải chi tiết. Trích dẫn tài liệu chứng minh tứ giác nội tiếp đường tròn: + Cho hình thang ABCD (AB CD AB CD) có 0 C D 60 CD AD 2. Chứng minh bốn điểm A B C D cùng thuộc một đường tròn. Hướng dẫn giải: Gọi I là trung điểm CD, ta có IC AB ICBA IC AB là hình hành BC AI (1). Tương tự AD BI (2). ABCD là hình thang có 0 C D 60 nên ABCD là hình thang cân (3). Từ (1), (2), (3) ta có hai tam giác ICB IAD đều hay IA IB IC ID hay bốn điểm A B C D cùng thuộc một đường tròn. + Cho hình thoi ABCD. Gọi O là giao điểm hai đường chéo. M N R và S lần lượt là hình chiếu của O trên AB BC CD và DA. Chứng minh bốn điểm M N R và S cùng thuộc một đường tròn. Do ABCD là hình thoi nên O là trung điểm của AC BD AC BD là phân giác góc A B C D nên MAO SAO NCO PDO OM ON OP OS hay bốn điểm M N R và S cùng thuộc một đường tròn. + Cho tam giác ABC có các đường cao BH và CK. Chứng minh B K H C cùng nằm trên một đường tròn. Xác định tâm đường tròn đó. Hướng dẫn giải: Gọi I là trung điểm CB do CHB CKB vuông tại H K nên IC IB IK IH hay B K H C cùng nằm trên một đường tròn tâm I.

Nguồn: toanmath.com

Đọc Sách

Tài liệu Toán 9 chủ đề căn thức bậc hai và hằng đẳng thức $sqrt A2 left A right$
Tài liệu gồm 25 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề căn thức bậc hai và hằng đẳng thức $\sqrt {A^2} = \left| A \right|$ trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Căn thức bậc hai. a. Định nghĩa: Với A là một biểu thức đại số thì A được gọi là căn thức bậc hai của A và A gọi là biểu thức lấy căn hay là biểu thức dưới dấu căn. b. A có nghĩa (hay xác định) khi 1 A 0 A ⇒ có nghĩa khi A > 0. Ví dụ: 3x có nghĩa khi 30 0 x x. 2. Hằng đẳng thức. Ví dụ 1: 2 2 12 12 12. Ví dụ 2: Rút gọn biểu thức sau: 2 (2) x với x ≥ 2. B. Bài tập và các dạng toán. Dạng 1: Tìm điều kiện để biểu thức chứa căn có nghĩa. Dạng 2: Tính giá trị của biểu thức. Dạng 3: Rút gọn các biểu thức chứa biến. Dạng 4: giải phương trình. Dạng 5: Tìm GTLN, GTNN của biểu thức. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề liên hệ giữa phép chia và phép khai phương
Tài liệu gồm 14 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề liên hệ giữa phép chia và phép khai phương trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Định lý: Với A B 0 0 thì A A B B. 2. Quy tắc khai phương một thương: Muốn khai phương A B (với A B 0 0), ta khai phương A khai phương B rồi lấy thương của hai kết quả. Ta có: 0 0 A A A B. 3. Quy tắc chia các căn bậc hai: Muốn chia căn bậc hai của số A ≥ 0 cho căn bậc hai của số B > 0, ta có thể chia A cho B rồi khai phương kết quả đó 0 0 A A A B. B. Bài tập và các dạng toán. Dạng 1 : Thực hiện phép tính. Cách giải: Áp dụng công thức khai phương một thương. Dạng 2 : Rút gọn biểu thức. Cách giải: Áp dụng quy tắc khai phương một thương. Dạng 3 : Giải phương trình. Cách giải: Khi giải phương trình chứa căn thức, luôn cần chú ý đến các điều kiện đi kèm. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề liên hệ giữa phép nhân và phép khai phương
Tài liệu gồm 19 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề liên hệ giữa phép nhân và phép khai phương trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Định lý: Với hai số a b 0 ta có: ab a b. Chú ý: Định lí trên còn có thể mở rộng cho tích của nhiều số không âm. 2. Quy tắc khai phương một tích. Với A B 0 0 ta có: AB A B. Mở rộng: Với 1 2 0 0 … 0 AA n ta có: 1 2 1 2 A A n n. 3. Quy tắc nhân các căn bậc hai. Với hai biểu thức A B 0 0 ta có: A B AB. Chú ý: Với A ≥ 0, ta có: 2 2 A A AA. B. Bài tập và các dạng toán. Dạng 1 : Tính giá trị biểu thức. Cách giải: Áp dụng công thức khai phương một tích. Dạng 2 : Rút gọn biểu thức. Cách giải: Áp dụng công thức khai phương của một tích. Dạng 3 : Giải phương trình. Cách giải: Khi giải phương trình chứa căn thức, luôn cần chú ý đến các điều kiện đi kèm. Dạng 4 : Chứng minh đẳng thức. Cách giải: Áp dụng bất đẳng thức Côsi cho các số không âm. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề rút gọn biểu thức chứa căn thức bậc hai
Tài liệu gồm 22 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề rút gọn biểu thức chứa căn thức bậc hai trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. KIẾN THỨC CẦN NHỚ. Bước 1: Tìm điều kiện xác định của biểu thức. Bước 2: Phân tích tử số và mẫu số thành nhân tử rồi rút gọn nếu có thể. Bước 3: Quy đồng. Bước 4: Phá ngoặc bằng cách nhân khai trển các hạng tử với nhau hoặc khi triển hằng đẳng thức. Bước 5: Thu gọn bằng cách cộng, trừ các hạng tử đồng dạng. Bước 6: Phân tích tử thành nhân tử. Bước 7: Rút gọn lần cuối. CÁC DẠNG TOÁN. Dạng 1 : Rút gọn biểu thức chứa căn bậc hai và tìm giá trị của biểu thức khi biết giá trị của biến. Cách giải: Thực hiện theo hai bước: Bước 1: Để rút gọn biểu thức chứa căn bậc hai đã cho, ta sử dụng các phép biến đổi như đưa thừa số ra ngoài hoặc vào trong dấu căn, trục căn thức ở mẫu, quy đồng mẫu thức … một cách linh hoạt. Bước 2: Để tìm giá trị của biểu thức khi biết giá trị của biến ta rút gọn giá trị của biến (nếu cần) sau đó thay vào biểu thức đã được rút gọn ở trên và tính kết quả. Dạng 2 : Rút gọn biểu thức chứa căn bậc hai và tìm giá trị của biến khi biết giá trị của biểu thức. Cách giải: Để tìm giá trị của biến khi biết giá trị của biẻu thức tá ử dụng kết quả biểu thức rút gọn và giá trị đã biết của biểu thức trong đề bài để tìm ra kết quả. Dạng 3 : Rút gọn biểu thức chứa căn bậc hai và tìm giá trị của biến để biểu thức nhận giá trị nguyên. Cách giải: Ta xét hai trường hợp sau: Trường hợp 1: Tìm giá trị nguyên của biến để biểu thức nhậ giá trị nguyên. Trường hợp 2: Tìm giá trị thực của biến để biểu thức nhận giá trị nguyên. Dạng 4 : Rút gọn biểu thức chứa căn bậc hai và so sánh biểu thức với một số (hoặc một biểu thức khác). Cách giải: Để so sánh một biểu thức M với một số a, ta xét hiệu M – a và xét dấu của hiệu này, từ đó đi đến kết quả của phép so sánh. Dạng 5 : Rút gọn biểu thức chứa căn bậc hai và tìm GTNN (hoặc GTLN) của biểu thức. Cách giải: Chú ý rằng: – Biểu thức P có giá trị lớn nhất là a, ký hiệu P max a nếu P a với mọi giá trị của biến và tồn tại ít nhất một giá trị của biến để dấu “=” xảy ra. – Biểu thức P có giá trị nhỏ nhất là b, ký hiệu, P b min nếu P b với mọi giá trị của biến và tồn tại ít nhất một giá trị của biến để dấu “=” xảy ra. BÀI TẬP TỔNG HỢP. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP TỰ LUYỆN.