Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề nguyên hàm - Lại Văn Tôn

Tài liệu gồm 48 trang bao gồm lý thuyết nguyên hàm, công thức nguyên hàm cơ bản và mở rộng, các dạng toán nguyên hàm, ví dụ minh họa và bài tập trắc nghiệm – tự luận chuyên đề nguyên hàm, tài liệu được biên soạn bởi thầy giáo Lại Văn Tôn. Nội dung tài liệu chuyên đề nguyên hàm : 1. ĐỊNH NGHĨA NGUYÊN HÀM 2. NGUYÊN HÀM CỦA CÁC HÀM SƠ CẤP 2.1. Bảng nguyên hàm các hàm sơ cấp 2.2. Các ví dụ minh họa 3. CÁC TÍNH CHẤT CỦA NGUYÊN HÀM 4. TÌM NGUYÊN HÀM BẰNG PHƯƠNG PHÁP PHÂN TÍCH 4.1. Các công thức, kỹ năng phân tích cần nhớ 4.2. Các dạng phân tích cơ bản 4.2.1. Biến đổi căn thức, hàm mũ về dạng lũy thừa, mũ cơ bản 4.2.2. Phân tích hàm hữu tỉ 4.2.3. Phân tích hàm lượng giác 4.2.4. Phân tích hàm siêu việt [ads] 5. TÌM NGUYÊN HÀM BẰNG PHƯƠNG PHÁP ĐỔI BIẾN 5.1. Một số ví dụ mở đầu về phương pháp đổi biến 5.2. Đổi biến hàm hữu tỉ, hàm căn thức đơn giản, hàm mũ – logarit 5.3. Đổi biến hàm lượng giác 5.4. Đổi biến hàm vô tỉ 6. TÌM NGUYÊN HÀM BẰNG PHƯƠNG PHÁP NGUYÊN HÀM TỪNG PHẦN 6.1. Lý thuyết nguyên hàm từng phần 6.2. Các ví dụ minh họa 7. GIỚI THIỆU MỘT SỐ BÀI TẬP ĐỊNH DẠNG TRẮC NGHIỆM 7.1. Các câu hỏi lý thuyết 7.2. Tìm nguyên hàm cụ thể 7.3. Tìm một nguyên hàm riêng, tính giá trị của nguyên hàm tìm được

Nguồn: toanmath.com

Đọc Sách

Tổng hợp 414 bài tập trắc nghiệm nguyên hàm trong đề thi thử có đáp án - Trần Văn Tài
Tài liệu gồm 63 trang tổng hợp 414 bài tập trắc nghiệm chủ đề nguyên hàm trong các đề thi thử THPT Quốc gia 2017 môn Toán, có đáp án (Những phương án được tô màu đỏ) Trích dẫn tài liệu : + Cho hai hàm số f(x), g(x) là hàm số liên tục trên R, có F(x), G(x) lần lượt là một nguyên hàm của f(x), g(x). Xét các mệnh đề sau: (I): F(x) + G(x) là một nguyên hàm của f(x) + g(x) (II): kF(x) là một nguyên hàm của kf(x) với k ∈ R (III): F(x).G(x) là một nguyên hàm của f(x)g(x) Những mệnh đề nào là mệnh đề đúng? A. (I) và (II) B. (I), (II) và (III) [ads] C. (II) D. (I) + Ký hiệu K là khoảng hoặc đoạn hoặc nửa khoảng của R. Cho hàm số f(x) xác định trên K. Ta nói F(x) được gọi là nguyên hàm của hàm số f(x) trên K nếu như: A. F(x) = f'(x) + C, C là hằng số tuỳ ý B. F'(x) = f(x) C. F'(x) = f(x) + C, C là hằng số tuỳ ý D. F(x) = f'(x) + Giả sử F(x) là nguyên hàm của hàm số f(x) = 4x – 1. Đồ thị của hàm số F(x) và f(x) cắt nhau tại một điểm trên trục tung. Tất cả các điểm chung của đồ thị hai hàm số trên là: A. (0; 1) B. (5/2; 9) C. (0; 1) và (5/2; 9) D. (5/2; 8)
Một số vấn đề chọn lọc nguyên hàm, tích phân và ứng dụng - Vũ Ngọc Huyền
Tài liệu gồm 24 trang trình bày một số vấn đề chọn lọc về chủ đề nguyên hàm, tích phân và ứng dụng cần nắm vững. Nội dung tài liệu gồm các phần: + Phần 1. Lý thuyết và ví dụ mẫu 1. Nguyên hàm và các tính chất cơ bản 2. Hai phương pháp cơ bản để tìm nguyên hàm 3. Khái niệm và các tính chất cơ bản của tích phân 4. Hai phương pháp cơ bản tính tích phân 5. Ứng dụng hình học của tích phân + Phần 2. Bài tập rèn luyện kỹ năng 1. Nguyên hàm – chọn lọc các bài tập về nguyên hàm trong các đề thi thử 2. Tích phân – chọn lọc các bài tập về tích phân trong các đề thi thử 3. Ứng dụng của tích phân trong hình học. [ads] + Phần 3. Bổ sung một số dạng về nguyên hàm – tích phân 1. Tích phân và nguyên hàm một số hàm lượng giác 2. Đổi biến lượng giác 3. Nguyên hàm và tích phân của hàm phân thức hữu tỉ 4. Bảng một số nguyên hàm thường gặp + Phần 4. Ứng dụng của nguyên hàm, tích phân trong thực tế
Tuyển chọn 280 câu hỏi trắc nghiệm nguyên hàm - tích phân - Phan Trung Hiếu
Tài liệu này được tổng hợp và sàng lọc từ các cuốn sách và từ một số nguồn tham khảo trên internet. Các câu hỏi được chia thành 3 cấp độ: Thân thương, Quen thuộc và Lạ phù hợp với thời gian của hình thức thi trắc nghiệm. Hy vọng tài liệu này sẽ giúp ích được cho giáo viên trong việc ra đề thi và các em học sinh trong việc học tập về chuyên đề nguyên hàm – tích phân. [ads]
Tổng hợp 980 câu trắc nghiệm nguyên hàm, tích phân và ứng dụng - Nguyễn Bảo Vương
Tài liệu tuyển chọn 980 bài tập trắc nghiệm nguyên hàm, tích phân và ứng dụng có đáp án với độ khó từ cơ bản đến vận dung cao được sưu tầm, tổng hợp và biên soạn bởi thầy Nguyễn Bảo Vương. Tài liệu được chia thành 6 phần, phân dạng rõ các bài cơ bản và nâng cao. Ngoài phần bài tập còn có lý thuyết, phân dạng và các ví dụ mẫu có lời giải chi tiết. Các dạng toán nguyên hàm – tích phân và ứng dụng được đề cập trong tài liệu gồm: [ads] + Dạng 1. Tìm nguyên hàm bằng phương pháp phân tích + Dạng 2. Tìm nguyên hàm bằng phương pháp đổi biến số + Dạng 3. Tìm nguyên hàm bằng phương pháp từng phần + Dạng 4. Tính tích phân bằng phương pháp phân tích + Dạng 5. Tính tích phân bằng phương pháp đổi biến số + Dạng 6. Tính tích phân bằng phương pháp từng phần + Dạng 7. Diện tích hình phẳng giới hạn + Dạng 8. Thể tích hình phẳng giới hạn