Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Toàn cảnh đề Toán tuyển sinh trường chuyên năm học 2019 2020

Nội dung Toàn cảnh đề Toán tuyển sinh trường chuyên năm học 2019 2020 Bản PDF - Nội dung bài viết Giới Thiệu Về Tài Liệu Toàn Cảnh Đề Toán Tuyển Sinh Lớp 10 Trường Chuyên Năm Học 2019 - 2020 Giới Thiệu Về Tài Liệu Toàn Cảnh Đề Toán Tuyển Sinh Lớp 10 Trường Chuyên Năm Học 2019 - 2020 Sytu xin được trình bày đến quý thầy cô và các em học sinh về tài liệu toàn cảnh đề Toán tuyển sinh lớp 10 trường chuyên năm học 2019 - 2020 do thầy Vũ Ngọc Thành tổng hợp. Tài liệu bao gồm 312 trang phân loại các câu hỏi và bài tập trong các đề Toán tuyển sinh vào lớp 10 THPT chuyên năm học 2019 - 2020 thành các chuyên đề, đồng thời cung cấp lời giải chi tiết cho từng câu hỏi. Cụ thể, tài liệu toàn cảnh này bao gồm các chuyên đề sau: Chuyên đề 1: Căn bậc hai và bài toán liên quan (Trang 2). Chuyên đề 2: Bất đẳng thức - giá trị lớn nhất & giá trị nhỏ nhất (Trang 29). Chuyên đề 3: Phương trình (Trang 62). Chuyên đề 4: Hệ phương trình (Trang 104). Chuyên đề 5: Hàm số (Trang 131). Chuyên đề 6: Giải bài toán bằng cách lập phương trình - hệ phương trình - bài toán thực tế (Trang 150). Chuyên đề 7: Hình học (Trang 158). Chuyên đề 8: Số học (Trang 262). Chuyên đề 9: Biểu thức (Trang 304). Đây sẽ là nguồn tư liệu hữu ích để các em học sinh ôn tập Toán một cách toàn diện, chuẩn bị tốt cho kỳ thi tuyển sinh vào trường chuyên. Hy vọng tài liệu này sẽ giúp các em đạt được kết quả cao trong kỳ thi sắp tới. Xin cảm ơn!

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Phú Thọ
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Phú Thọ gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho tứ giác ABCD nội tiếp đường tròn (O; R). Gọi I là giao điểm AC và BD. Kẻ IH vuông góc với AB; IK vuông góc với AD (H thuộc AB; K thuộc AD). a) Chứng minh tứ giác AHIK nội tiếp đường tròn b) Chứng minh rằng IA.IC = IB.ID c) Chứng minh rằng tam giác HIK và tam giác BCD đồng dạng [ads] + Trong mặt phẳng tọa độ Oxy cho parabol (P) có phương trình y = 1/2x^2 và hai điểm A, B thuộc (P) có hoành độ lần lượt là xA = -1; xB = 2. a) Tìm tọa độ A, B b) Viết phương trình đường thẳng (d) đi qua hai điểm A, B c) Tính khoảng cách từ O (gốc tọa độ) đến đường thẳng (d)
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Ninh Bình
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Ninh Bình gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Một ô tô dự định đi từ bến xe A đến bến xe B cách nhau 90 km với vận tốc không đổi. Tuy nhiên, ô tô khởi hành muộn 12 phút so với dự định. Để đến bến xe B đúng giờ ô tô đã tăng vận tốc lên 5 km/h so với vận tốc dự định. Tìm vận tốc dự định của ô tô. + Cho đường tròn tâm O, bán kính R. Từ điểm C nằm ngoài đường tròn kẻ hai tiếp tuyến CA, CB và cát tuyến CMN với đường tròn (O) (A, B là hai tiếp điểm, M nằm giữa C và N). Gọi H là giao điểm của CO và AB. [ads] a) Chứng minh tứ giác AOBC nội tiếp b) Chứng minh CH.CO = CM.CN c) Tiếp tuyến tại M của đường tròn (O) cắt CA, CB theo thứ tự tại E và F. Đường vuông góc với CO tại O cắt CA, CB theo thứ tự tại P, Q. Chứng minh 2 góc POE và OFQ bằng nhau d) Chứng minh: PE + QF >= PQ
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Tiền Giang
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Tiền Giang gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Hai thành phố A và B cách nhau 150km. Một xe máy khởi hành từ A đến B, cùng lúc đó một ôtô cũng khởi hành từ B đến A với vận tốc lớn hơn vận tốc của xe máy là 10km/h. Ôtô đến A được 30 phút thì xe máy cũng đến B. Tính vận tốc của mỗi xe. + Cho nửa đường tròn tâm O, đường kính AB = 2R. Gọi M là điểm chính giữa của cung AB, N là điểm bất kỳ thuộc cung MB (N khác M và B). Tia AM và AN cắt tiếp tuyến tại B của nửa đường tròn tâm O lần lượt tại C và D [ads] 1. Tính số đo góc ACB 2. Chứng minh tứ giác MNDC nội tiếp trong một đường tròn 3. Chứng minh AM.AC = AN.AD = 4R^2 + Cho hình nón có đường sinh bằng 26cm, diện tích xung quanh là 260pi cm2. Tính bán kính đáy và thể tích của hình nón.
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Vĩnh Phúc
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Vĩnh Phúc gồm 4 câu hỏi trắc nghiệm và 4 bài toán tự luận, có đáp án và lời giải chi tiết.