Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển HSG Toán năm 2020 sở GD ĐT Khánh Hòa (vòng 1).

Nội dung Đề chọn đội tuyển HSG Toán năm 2020 sở GD ĐT Khánh Hòa (vòng 1). Bản PDF Thứ Năm ngày 19 tháng 09 năm 2019, sở Giáo dục và Đào tạo Khánh Hòa tổ chức kỳ thi chọn đội tuyển thi học sinh giỏi môn Toán khối THPT cấp Quốc gia năm 2020. Đề chọn đội tuyển HSG Toán năm 2020 sở GD&ĐT Khánh Hòa (vòng 1) gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 180 phút. Trích dẫn đề chọn đội tuyển HSG Toán năm 2020 sở GD&ĐT Khánh Hòa (vòng 1) : + Chứng minh rằng với mỗi số nguyên dương n, tồn tại duy nhất một cặp số nguyên dương (a;b) sao cho n = 1/2.(a + b – 1)(a + b – 2) + a. [ads] + Một nhóm phượt có n thành viên. Năm 2018, họ thực hiện sáu chuyến du lịch mà mỗi chuyến có đúng 5 thành viên tham gia. Biết rằng hai chuyến du lịch bất kì chung nhau không quá 2 thành viên. Tìm giá trị nhỏ nhất của n. + Cho tam giác ABC nhọn không cần có đường trung tuyến AM và đường phân giác trong AD. Qua điểm N thuộc đoạn thẳng AD (N không trùng với A và D), kẻ NP vuông góc với AB (P thuộc cạnh AB). Đường thẳng qua P vuông góc với AD cắt đoạn thẳng AM tại Q. Chứng minh rằng QN vuông góc với BC.

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG thành phố Toán 12 năm học 2017 - 2018 sở Hải Phòng (Không chuyên)
Đề thi chọn đội dự tuyển thi học sinh giỏi Quốc gia THPT 2018 môn Toán sở Đồng Nai
Đề thi chọn HSG thành phố Toán 12 năm 2019 - 2020 sở Hà Nội
Đề thi chọn HSG thành phố môn Toán năm 2018 - 2019 sở Hải Phòng