Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp phân tích đa thức thành nhân tử

Tài liệu gồm 74 trang, hướng dẫn các phương pháp phân tích đa thức thành nhân tử, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 phần Đại số 8. A. MỘT SỐ PHƯƠNG PHÁP PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ I. Các phương pháp phân tích cơ bản 1. Phương pháp đặt nhân tử chung. + Tìm nhân tử chung là những đơn thức, đa thức có mặt trong tất cả các hạng tử. + Phân tích mỗi hạng tử thành tích của nhân tử chung và một nhân tử khác. + Viết nhân tử chung ra ngoài dấu ngoặc, viết các nhân tử còn lại của mỗi hạng tử vào trong dấu ngoặc (kể cả dấu của chúng). 2. Phương pháp dùng hằng đẳng thức. + Dùng các hằng đẳng thức đáng nhớ để phân tích đa thức thành nhân tử. + Cần chú ý đến việc vận dụng hằng đẳng thức. 3. Phương pháp nhóm nhiều hạng tử và phối hợp các phương pháp. + Kết hợp các hạng tử thích hợp thành từng nhóm. + Áp dụng liên tiếp các phương pháp đặt nhân tử chung hoặc dùng hằng đẳng thức. II. Một số phương pháp nâng cao Chúng ta đã biết các phương pháp cơ bản để phân tích một đa thức thành nhân tử là đặt nhân tử chung, dùng hằng đẳng thức, nhóm các hạng tử và phối hợp các phương pháp đó. Tuy nhiên có những đa thức mặc dù rất đơn giản, nếu chỉ biết dùng ba phương pháp đó thôi thì không thể phân tích thành nhân tử được. Do đó trong chuyên đề này chúng ta sẽ xét thêm một số phương pháp khác để phân tích đa thức thành nhân tử. 1. Phương pháp tách hạng tử. 1.1. Đối với đa thức bậc hai f(x) = ax2 + bx + c có nghiệm. 1.2. Đối với đa thức hai biến dạng f(x;y) = ax2 + bxy + cy2. 1.3. Đối với đa thức bậc từ 3 trở lên. 1.4. Đối với đa thức nhiều biến. 2. Phương pháp thêm và bớt cùng một hạng tử. Với một số đa thức không thể sử dụng các phương pháp như đặt nhân tử chung, sử dụng hằng đẳng thức, nhóm hạng tử cũng như phép tách hạng tử để phân tích thành nhân tử. Khi đó ta có thể sử dụng phép thêm bớt cùng một hạng tử với mục đích làm xuất hiện nhân tử chung hoặc xuất hiện các hằng đẳng thức. 2.1. Thêm và bớt cùng một số các hạng tử làm xuất hiện các hằng đẳng thức. 2.2. Thêm và bớt cùng một số hạng tử làm xuất hiện nhân tử chung. 3. Phương pháp đổi biến. Với một số đa thức có bậc cao hoặc có cấu tạo phức tạp mà khi thự hiện theo các phương pháp như trên gây ra nhiều khó khăn. Khi đó thông qua phép đổi biết ta đưa được về đa thức có bậc thấp hơn goặc đơn giản hơn để thuận tiện cho việc phân tích thành nhân tử. Sau khi phân tích thành nhân tử đối với đa thức mới ta thay trở lại biến cũ để được đa thức với biến cũ. 4. Phương pháp hệ số bất định. 5. Phương pháp xét giá trị riêng. Trong phương pháp này, trước hết ta xác định dạng các nhân tử chứa biến của đa thức, rồi gán cho các biến các giá trị cụ thể để xác định các nhân tử còn lại. B. MỘT SỐ BÀI TẬP TỰ LUYỆN C. HƯỚNG DẪN GIẢI

Nguồn: toanmath.com

Đọc Sách

Lý thuyết, các dạng toán và bài tập bất phương trình bậc nhất một ẩn
Nội dung Lý thuyết, các dạng toán và bài tập bất phương trình bậc nhất một ẩn Bản PDF - Nội dung bài viết Tài liệu học toán Bất phương trình bậc nhất một ẩn Tài liệu học toán Bất phương trình bậc nhất một ẩn Tài liệu này gồm tổng cộng 37 trang, cung cấp tóm tắt về lý thuyết, các dạng toán và bài tập liên quan đến bất phương trình bậc nhất một ẩn. Được thiết kế để hỗ trợ học sinh lớp 8 khi học chương trình toán học. Không chỉ giúp học sinh hiểu rõ lý thuyết mà còn cung cấp các bài tập thực hành giúp củng cố kiến thức và kỹ năng tính toán. Tài liệu này là nguồn tài liệu hữu ích giúp học sinh nắm vững và tự tin hơn khi giải các dạng toán bất phương trình bậc nhất một ẩn.
Lý thuyết, các dạng toán và bài tập phương trình bậc nhất một ẩn
Nội dung Lý thuyết, các dạng toán và bài tập phương trình bậc nhất một ẩn Bản PDF - Nội dung bài viết Lý thuyết, các dạng toán và bài tập phương trình bậc nhất một ẩn Lý thuyết, các dạng toán và bài tập phương trình bậc nhất một ẩn Tài liệu này bao gồm 43 trang, cung cấp tóm tắt lý thuyết, các dạng toán và bài tập về phương trình bậc nhất một ẩn, nhằm hỗ trợ học sinh lớp 8 trong quá trình học tập chương trình Toán lớp 8 (tập 2) phần Đại số chương 3. Trang 1: Mở đầu về phương trình. Trang 2: Phương trình bậc nhất một ẩn và cách giải. Các dạng bao gồm: Xét x = a có là nghiệm của phương trình không? Xét hai phương trình có tương đương nhau không? Nhận dạng phương trình bậc nhất một ẩn số. Giải phương trình bậc nhất. Trang 3: Phương trình đưa được về dạng ax + b = 0. Các dạng bao gồm: Tìm chỗ sai và sửa lại các bài giảng phương trình. Giải phương trình. Giải bài toán bằng cách lập phương trình. Đây là tài liệu cung cấp kiến thức cơ bản và bài tập thực hành giúp học sinh hiểu rõ hơn về phương trình bậc nhất một ẩn, từ đó cải thiện kỹ năng giải toán và nắm vững nội dung môn Toán lớp 8.
Lý thuyết, các dạng toán và bài tập đa giác và diện tích đa giác
Nội dung Lý thuyết, các dạng toán và bài tập đa giác và diện tích đa giác Bản PDF - Nội dung bài viết Hướng dẫn toán học đa giác và diện tích đa giác Hướng dẫn toán học đa giác và diện tích đa giác Bạn đang cần tìm hiểu về lý thuyết, các dạng toán và bài tập liên quan đến đa giác và diện tích đa giác? Vậy thì tài liệu này chính là điểm đến lý tưởng dành cho bạn! Với 33 trang nội dung chi tiết, tóm tắt lý thuyết, các dạng toán và bài tập thực hành, bạn sẽ có được kiến thức cần thiết để giải quyết các bài toán trong chương trình học của mình. Tài liệu được thiết kế dành riêng cho học sinh lớp 8, giúp họ nắm vững kiến thức và áp dụng vào thực hành một cách hiệu quả. Đồng thời, việc phân tích chi tiết và cụ thể trong tài liệu cũng giúp bạn hiểu rõ hơn về các khái niệm cơ bản liên quan đến đa giác và diện tích đa giác. Nhấn mạnh vào việc thực hành thông qua bài tập, tài liệu này sẽ giúp bạn rèn luyện kỹ năng giải quyết bài toán, tăng cường khả năng tư duy logic và logic. Hãy sử dụng tài liệu này như một công cụ hữu ích để nâng cao kiến thức toán học của mình!
Lý thuyết, các dạng toán và bài tập tứ giác
Nội dung Lý thuyết, các dạng toán và bài tập tứ giác Bản PDF - Nội dung bài viết Một tài liệu hữu ích cho học sinh lớp 8 khi học về tứ giác và hình thang Một tài liệu hữu ích cho học sinh lớp 8 khi học về tứ giác và hình thang Để giúp học sinh lớp 8 tiếp cận với chương trình Toán lớp 8 một cách hiệu quả, tài liệu này cung cấp một tổng hợp lý thuyết, các dạng toán và bài tập tứ giác. Với 55 trang tài liệu, học sinh sẽ được tóm tắt lý thuyết về tứ giác và hình thang, qua đó giúp họ hiểu rõ hơn về chủ đề này. Trang đầu tiên bắt đầu với phần chương 1 về tứ giác, bài 1 với các dạng toán như tính góc của tứ giác, vẽ tứ giác và tính độ dài. Học sinh sẽ được hướng dẫn về hệ thức giữa các độ dài trong tứ giác. Tiếp theo là bài 2 về hình thang, với các dạng toán như tính góc và các phép tính liên quan. Với cách trình bày chi tiết và dễ hiểu, tài liệu này giúp học sinh nắm vững kiến thức, áp dụng vào các bài tập thực hành. Đây thực sự là một công cụ hữu ích để học sinh nắm vững kiến thức Toán một cách bài bản và chắc chắn.