Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn HSG Toán năm 2019 2020 cụm trường THPT huyện Việt Yên Bắc Giang

Nội dung Đề chọn HSG Toán năm 2019 2020 cụm trường THPT huyện Việt Yên Bắc Giang Bản PDF Ngày 13 tháng 01 năm 2020, cụm các trường THPT huyện Việt Yên, tỉnh Bắc Giang tổ chức kỳ thi chọn học sinh giỏi cấp huyện môn Toán năm học 2019 – 2020. Đề chọn HSG Toán năm 2019 – 2020 cụm trường THPT huyện Việt Yên – Bắc Giang mã đề 101, đề gồm có 04 trang với 40 câu trắc nghiệm (chiếm 14 điểm) và 03 câu tự luận (chiếm 06 điểm), thời gian học sinh làm bài thi là 120 phút, chưa kể thời gian giám thị coi thi phát đề. Trích dẫn đề chọn HSG Toán năm 2019 – 2020 cụm trường THPT huyện Việt Yên – Bắc Giang : + Một người gửi 8 triệu đồng vào ngân hàng với lãi suất 0,6 % một tháng. Kể từ lần gửi đầu tiên cứ sau hai tháng người đó lại gửi vào ngân hàng với số tiền 8 triệu đồng. Hỏi sau đúng hai năm kể từ lần gửi đầu tiên số tiền người đó thu được cả gốc và lãi là bao nhiêu ? biết ngân hàng tính lãi trên số tiền có thực tế ở trong ngân hàng, trong suốt quá trình gửi người đó không rút ra một đồng nào (kết quả làm tròn đến hàng nghìn). A. 101,876 triệu đồng. B. 103,852 triệu đồng. C. 106,385 triệu đồng. D. 110,686 triệu đồng. + Cho khối chóp S.ABCD có đáy là hình bình hành, điểm M thuộc cạnh SC sao cho SM = kMC. Mặt phẳng (P) qua AM và song song với BD chia khối chóp thành hai khối đa diện (H) và (E), (H) là khối đa diện chứa đỉnh C. Gọi VH, VE lần lượt là thể tích của (H) và (E). Tìm k để VH = 6VE. [ads] + Trong không gian Oxyz, cho tam giác ABC có A(3;1;2), B(-1;5;4) và điểm C thuộc trục hoành. Điểm M(a;b;c) nằm trên cạnh AB sao cho diện tích tam giác MAC bằng 3 lần diện tích tam giác MBC. Mệnh đề nào dưới đây đúng? + Cho hình trụ có tâm của hai đáy là O, O’. Hai điểm A, B lần lượt nằm trên hai đường tròn (O), (O’) sao cho AB = 4a, góc giữa AB và OO’ bằng 30°. Khoảng cách giữa AB và OO’ bằng a√3. Diện tích toàn phần của hình trụ bằng? + Từ các chữ số 1; 2; 3; 4; 5; 6; 7; 9 lập được bao nhiêu số tự nhiên có 5 chữ số khác nhau từng đôi một, trong đó có 3 chữ số lẻ và 2 chữ số chẵn. Tính tổng các số lập được. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi tỉnh lớp 12 môn Toán năm 2021 2022 sở GD ĐT Thừa Thiên Huế
Nội dung Đề thi học sinh giỏi tỉnh lớp 12 môn Toán năm 2021 2022 sở GD ĐT Thừa Thiên Huế Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Thừa Thiên Huế.
Đề thi học sinh giỏi lớp 12 môn Toán năm 2021 2022 sở GD ĐT TP Hồ Chí Minh
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán năm 2021 2022 sở GD ĐT TP Hồ Chí Minh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp thành phố môn Toán lớp 12 năm học 2021 – 2022 sở Giáo dục và Đào tạo thành phố Hồ Chí Minh; kỳ thi được diễn ra vào ngày 07 tháng 04 năm 2022. Trích dẫn đề thi học sinh giỏi Toán lớp 12 năm 2021 – 2022 sở GD&ĐT TP Hồ Chí Minh : + Cho các hàm số có đồ thị lần lượt là (C1), (C2), (C3). Đường thẳng x = 1 cắt (C1), (C2), (C3) lần lượt tại các điểm M, N, P. Biết phưong trình tiếp tuyến của (C1) tại M và của (C2) tại N lần lượt là y = 2x + 3 và y = 202(10x + 1). Viết phương trình tiếp tuyến của (C3) tại P. + Cho tứ diện ABCD có AB = a; AC = a√7; DAB = DBC = 90°, ABC = 120°; góc giữa hai mặt phẳng (BCD) và (ABD) bằng 30°. a) Tính theo a thể tích của tứ diện ABCD. b) Tính theo a bán kính mặt cầu ngoại tiếp tứ diện ABCD. + Xét tập hợp X chọn ngẫu nhiên các số a b c X để được hàm số bậc ba y. Tính xác suất để hàm số này đạt cực trị tại x = 1.
Đề thi học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2021 2022 sở GD ĐT Lạng Sơn
Nội dung Đề thi học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2021 2022 sở GD ĐT Lạng Sơn Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 THPT năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Lạng Sơn; đề thi gồm 01 trang với 05 bài toán dạng tự luận, thang điểm 20, thời gian học sinh làm bài thi là 180 phút (không kể thời gian giáo viên coi thi phát đề), đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán lớp 12 năm 2021 – 2022 sở GD&ĐT Lạng Sơn : + Cho 2021 tấm thẻ được đánh số theo thứ tự từ 1 đến 2021 (mỗi tấm thẻ được đánh duy nhất một số và không có hai thẻ nào có số giống nhau). Các tấm thẻ được úp xuống mặt bàn và không nhìn thấy số trên thẻ. Bốc ngẫu nhiên 1 tấm thẻ, tính xác xuất để số ghi trên tấm thẻ a) Chia hết cho cả 6 và 15. b) Chia hết cho 2, hoặc chia hết cho 3 hoặc chia hết cho 5. + Một cửa hàng bán quýt loại I với giá là 50.000 đồng/kg. Với giá bán này thì cửa hàng chỉ bán được khoảng 40kg mỗi ngày. Cửa hàng dự định giảm giá bán, ước tính nếu cửa hàng cứ giảm 5000 đồng/kg thì số quýt bán được tăng thêm là 50kg. Xác định giá bán để cửa hàng đó thu được lợi nhuận lớn nhất, biết rằng giá nhập mỗi kg quýt ban đầu là 30.000 đồng? + Cho hàm số 2 2 1 x y x có đồ thị C. Cho d là tiếp tuyến của C tại điểm M x y 0 0 d cắt hai đường tiệm cận của C lần lượt tại A và B. Tính độ dài IA IB theo 0 x (I là giao điểm của hai đường tiệm cận) và tìm bán kính lớn nhất của đường tròn nội tiếp tam giác IAB.
Đề thi chọn HSG tỉnh lớp 12 môn Toán THPT năm 2021 2022 sở GD ĐT Quảng Bình
Nội dung Đề thi chọn HSG tỉnh lớp 12 môn Toán THPT năm 2021 2022 sở GD ĐT Quảng Bình Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 THPT năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Quảng Bình; kỳ thi được diễn ra vào ngày 22 tháng 03 năm 2022. Trích dẫn đề thi chọn HSG tỉnh Toán lớp 12 THPT năm 2021 – 2022 sở GD&ĐT Quảng Bình : + Cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật có AB a AD b SA vuông góc với đáy và SA a 2. Gọi M là điểm nằm trên cạnh SA sao cho AM x 0 2 x a. a. Tính diện tích thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng MBC theo a, b và x. b. Tìm x theo a để mặt phẳng MBC chia khối chóp S.ABCD thành hai phần có thể tích bằng nhau. c. Trong trường hợp ABCD là hình vuông cạnh a, gọi K là điểm di động trên CD, H là hình chiếu của S lên BK. Tìm vị trí của điểm K trên CD để thể tích khối chóp S.ABH là lớn nhất. + Gọi A là tập hợp tất cả các số tự nhiên có 5 chữ số. Chọn ngẫu nhiên một số từ tập hợp A. Tính xác suất để chọn được một số sao cho số đó chia hết cho 7 và có chữ số hàng đơn vị bằng 1. + Trong không gian Oxyz, cho mặt cầu 2 2 2 Sx y z 1 4 8 và hai điểm A 3 0 0 B 4 2 1. Gọi M là một điểm bất kỳ thuộc mặt cầu S. Tìm giá trị nhỏ nhất của biểu thức MA MB 2.