Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề phép chia phân số

Tài liệu gồm 25 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề phép chia phân số, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 3: Phân số. Mục tiêu : Kiến thức: + Học sinh phát biểu được khái niệm số nghịch đảo và biết cách tìm số nghịch đảo của một số khác 0. + Phát biểu và vận dụng được quy tắc chia hai phân số. Kĩ năng: + Thực hiện được phép chia phân số. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Tìm số nghịch đảo của một số cho trước. Hai số gọi là nghịch đảo của nhau nếu tích của chúng bằng 1. Nhận xét: + Với a b và a b 0 0 thì a b và b a là hai số nghịch đảo. + Với a a 0 thì a và 1 a là hai số nghịch đảo. + Số 1 (hoặc -1) có nghịch đảo là chính nó. + Số 0 không có số nghịch đảo. + Mỗi số khác 0 chỉ có duy nhất một số nghịch đảo. Dạng 2 : Thực hiện phép chia phân số. Muốn chia một phân số hay một số nguyên cho một phân số, ta nhân số bị chia với số nghịch đảo của số chia. Muốn chia một phân số cho một số nguyên ta giữ nguyên tử của phân số và nhân mẫu với số nguyên. Dạng 3 : Viết một phân số dưới dạng thương của hai phân số. Ta thực hiện theo các bước sau: + Bước 1. Viết tử và mẫu dưới dạng tích của hai số nguyên. + Bước 2. Lập tích các phân số có tử và mẫu được chọn trong các số nguyên đó. + Bước 3. Chuyển phép nhân phân số thành phép chia cho số nghịch đảo. Dạng 4 : Tìm x. Dạng 5 : Bài toán có lời văn. Dạng 6 : Tính giá trị của một biểu thức.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề phép trừ hai số nguyên
Nội dung Chuyên đề phép trừ hai số nguyên Bản PDF - Nội dung bài viết Chuyên đề phép trừ hai số nguyênLÝ THUYẾT TRỌNG TÂMCÁC DẠNG BÀI TẬP Chuyên đề phép trừ hai số nguyên Tài liệu này bao gồm 16 trang, tập trung vào lý thuyết quan trọng, các dạng bài toán và bài tập chuyên đề về phép trừ hai số nguyên. Đồng thời, tài liệu cũng cung cấp đáp án và lời giải chi tiết, hỗ trợ các học sinh lớp 6 trong quá trình học tập chương trình Toán lớp 6, phần Số học chương 2: Số nguyên. Mục tiêu của tài liệu này là giúp học sinh: Hiểu rõ quy tắc trừ hai số nguyên. Thực hành phép trừ hai số nguyên một cách chính xác. Vận dụng quy tắc dấu ngoặc và quy tắc chuyển vế trong các phép tính. LÝ THUYẾT TRỌNG TÂM Tập trung vào việc trình bày lý thuyết quan trọng về phép trừ hai số nguyên. CÁC DẠNG BÀI TẬP Dạng 1: Thực hành phép trừ hai số nguyên. Để trừ số nguyên a cho số nguyên b, ta chỉ cần cộng a với số đối của b. Dạng 2: Vận dụng quy tắc dấu ngoặc. Khi loại bỏ dấu ngoặc với dấu "-" phía trước, ta phải đổi dấu của tất cả các số hạng trong ngoặc. Dạng 3: Sử dụng quy tắc chuyển vế. Khi chuyển vế một số hạng từ vế này sang vế kia của một đẳng thức, ta cần đảo ngược dấu của số hạng đó. Tóm lại, tài liệu này sẽ giúp học sinh lớp 6 nắm vững kiến thức cơ bản về phép trừ hai số nguyên và áp dụng chúng vào thực hành các bài tập đa dạng.
Chuyên đề phép cộng hai số nguyên
Nội dung Chuyên đề phép cộng hai số nguyên Bản PDF - Nội dung bài viết Chuyên đề phép cộng hai số nguyên Chuyên đề phép cộng hai số nguyên Tài liệu này gồm 15 trang, tập trung vào lý thuyết và các dạng toán liên quan đến phép cộng hai số nguyên. Được biên soạn để hỗ trợ học sinh lớp 6 trong quá trình học tập môn Toán, đặc biệt là chương trình Số học chương 2: Số nguyên. Mục tiêu của tài liệu: Hiểu quy tắc cộng hai số nguyên. Thực hiện phép cộng hai số nguyên. Vận dụng các tính chất như giao hoán, kết hợp, cộng với số 0, cộng với số đối trong tính toán. LÝ THUYẾT TRỌNG TÂM Tài liệu bắt đầu bằng việc giới thiệu quy tắc cộng hai số nguyên, cung cấp các ví dụ minh họa để học sinh dễ dàng nắm bắt và hiểu được cách thực hiện phép cộng. CÁC DẠNG BÀI TẬP Tiếp theo, tài liệu đưa ra các dạng bài tập khác nhau. Dạng 1 yêu cầu thực hiện phép cộng số nguyên, bao gồm cộng hai số nguyên cùng dấu và khác dấu. Dạng 2 tập trung vào áp dụng các tính chất của phép cộng số nguyên để tính tổng một cách linh hoạt. Với cách trình bày chi tiết, dễ hiểu và nhiều ví dụ minh họa, tài liệu này sẽ giúp học sinh lớp 6 nắm vững kiến thức về phép cộng hai số nguyên và phát triển kĩ năng tính toán của mình một cách nhanh chóng và hiệu quả.
Chuyên đề tập hợp các số nguyên
Nội dung Chuyên đề tập hợp các số nguyên Bản PDF - Nội dung bài viết Chuyên đề tập hợp các số nguyên Chuyên đề tập hợp các số nguyên Tài liệu này cung cấp kiến thức cơ bản về các số nguyên, giúp học sinh lớp 6 hiểu rõ về nhận biết, biểu diễn và so sánh số nguyên. Trải qua 16 trang sách, học sinh sẽ được hướng dẫn cách nhận biết số nguyên âm và học cách biểu diễn chúng trên trục số. Đồng thời, sách cũng giúp học sinh hiểu rõ về ý nghĩa của số nguyên âm trong các bài toán thực tiễn. Thông qua các dạng bài tập và lời giải chi tiết, học sinh sẽ rèn luyện được kỹ năng xác định số nguyên, so sánh các số nguyên, tính giá trị tuyệt đối của số nguyên. Đặc biệt, sách cũng giới thiệu các tính chất cơ bản về số nguyên, giúp học sinh tự tin hơn khi giải các bài toán liên quan đến chương trình Toán lớp 6. Với mục tiêu làm nền tảng cho việc hiểu sâu về số học, tài liệu này không chỉ hỗ trợ học sinh trong quá trình học tập mà còn giúp họ phát triển kỹ năng logic, suy luận và tư duy toán học.
Chuyên đề bội chung và bội chung nhỏ nhất
Nội dung Chuyên đề bội chung và bội chung nhỏ nhất Bản PDF - Nội dung bài viết Chuyên đề bội chung và bội chung nhỏ nhất Chuyên đề bội chung và bội chung nhỏ nhất Tài liệu này bao gồm 12 trang, cung cấp kiến thức về bội chung và bội chung nhỏ nhất của hai hay nhiều số. Nội dung tập trung vào lý thuyết cơ bản, các dạng toán và bài tập thực hành. Đi kèm là đáp án và lời giải chi tiết, giúp học sinh lớp 6 học tập môn Toán một cách hiệu quả. Trước hết, chúng ta cần hiểu khái niệm bội chung và bội chung nhỏ nhất của hai hay nhiều số. Bội chung là tổ hợp của tất cả các số đó. Bội chung nhỏ nhất là số nhỏ nhất trong tập hợp các bội chung của các số đó. Để tìm bội chung nhỏ nhất, ta cần phân tích các số ra thừa số nguyên tố, chọn ra các thừa số chung và riêng, sau đó lập tích các thừa số với số mũ lớn nhất của nó. Kết quả là bội chung nhỏ nhất cần tìm. Thông qua việc tìm bội chung nhỏ nhất, chúng ta có thể dễ dàng tìm bội chung của các số đã cho. Ngoài ra, quen biết với các dạng bài tập về bội chung và bội chung nhỏ nhất giúp học sinh vận dụng kiến thức vào thực tế một cách linh hoạt và hiệu quả. Trên cơ sở lí thuyết và thực hành này, học sinh sẽ phát triển kiến thức vững chắc về bội chung và bội chung nhỏ nhất, từ đó năng động giải quyết các bài toán liên quan đến chương trình Toán lớp 6. Với sự hỗ trợ từ tài liệu này, việc ôn tập và bổ túc ở mức độ cao hơn sẽ trở nên dễ dàng và hiệu quả hơn bao giờ hết.