Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hình học không gian cổ điển - Bùi Trần Duy Tuấn

giới thiệu đến thầy, cô và các em học sinh cuốn tài liệu chuyên đề hình học không gian cổ điển do thầy Bùi Trần Duy Tuấn biên soạn, tài liệu gồm 301 trang hệ thống hóa đầy đủ kiến thức, dạng toán thường gặp và các bài tập trắc nghiệm – tự luận có lời giải chi tiết các vấn đề về hình học không gian cổ điển trong chương trình Hình học 11 và Hình học 12. Nội dung tài liệu : I. MỘT SỐ KIẾN THỨC HÌNH HỌC PHẲNG 1. Các đường trong tam giác 2. Tam giác ABC vuông tại A 3. Các hệ thức lượng trong tam giác thường 4. Hai tam giác đồng dạng và định lí Talet 5. Các công thức tính diện tích II. MỘT SỐ PHƯƠNG PHÁP CHỨNG MINH TRONG HÌNH HỌC KHÔNG GIAN 1. Chứng minh đường thẳng vuông góc với mặt phẳng 2. Chứng minh hai đường thẳng vuông góc 3. Chứng minh hai mặt phẳng vuông góc 4. Hai định lí về quan hệ vuông góc 5. Định lí ba đường vuông góc, công thức diện tích hình chiếu CHỦ ĐỀ 1 : KHỐI ĐA DIỆN. PHÉP BIẾN HÌNH TRONG KHÔNG GIAN  A. KHÁI NIỆM VỀ KHỐI ĐA DIỆN 1. Khái niệm về hình đa diện 2. Khái niệm về khối đa diện 3. Phân chia và lắp ghép các khối đa diện. Một số kết quả quan trọng B. PHÉP BIẾN HÌNH TRONG KHÔNG GIAN – HAI HÌNH BẰNG NHAU I. PHÉP DỜI HÌNH TRONG KHÔNG GIAN 1. Phép tịnh tiến theo vectơ v 2. Phép đối xứng qua tâm O 3. Phép đối xứng qua đường thẳng d (phép đối xứng trục d) 4. Phép đối xứng qua mặt phẳng (P). Mặt phẳng đối xứng của một số hình thường gặp II. HAI HÌNH BẰNG NHAU III. PHÉP VỊ TỰ VÀ SỰ ĐỒNG DẠNG CỦA CÁC KHỐI ĐA DIỆN 1. Phép vị tự trong không gian 2. Hai hình đồng dạng C. KHỐI ĐA DIỆN LỒI. KHỐI ĐA DIỆN ĐỀU CHỦ ĐỀ 2 : GÓC TRONG KHÔNG GIAN 1. Góc giữa hai đường thẳng 2. Góc giữa đường thẳng và mặt phẳng 3. Góc giữa hai mặt phẳng [ads] CHỦ ĐỀ 3 : KHOẢNG CÁCH TRONG KHÔNG GIAN 1. Dạng 1: Khoảng cách từ một điểm đến một đường thẳng 2. Dạng 2: Khoảng cách từ một điểm đến một mặt phẳng 3. Dạng 3: Khoảng cách giữa đường thẳng và mặt phẳng song song. Khoảng cách giữa hai mặt phẳng song song 4. Dạng 4: Khoảng cách giữa hai đường thẳng chéo nhau CHỦ ĐỀ 4 : THỂ TÍCH KHỐI ĐA DIỆN A. CÔNG THỨC TÍNH THỂ TÍCH KHỐI ĐA DIỆN 1. Thể tích khối chóp 2. Thể tích khối lăng trụ và khối hộp chữ nhật 3. Một số khái niệm và kỹ thuật cần nắm B. CÁC PHƯƠNG PHÁP VÀ DẠNG TOÁN TÍNH THỂ TÍCH KHỐI ĐA DIỆN 1. Phương pháp tính toán trực tiếp 2. Phương pháp tính thể tích gián tiếp bằng cách phân chia lắp ghép các khối chóp 3. Phương pháp tỷ số thể tích 4. Bài toán min – max thể tích PHẦN MỞ RỘNG: ỨNG DỤNG HÌNH HỌC GIẢI TÍCH KHÔNG GIAN GIẢI HÌNH HỌC KHÔNG GIAN CỔ ĐIỂN  1. Hệ trục tọa độ trong không gian 2. Tọa độ vectơ 3. Tọa độ của điểm 4. Tích có hướng của hai vectơ 5. Vấn đề về góc 6. Vấn đề về khoảng cách CHỦ ĐỀ 5 : NÓN – TRỤ – CẦU A. MẶT NÓN 1. Mặt nón tròn xoay 2. Hình nón tròn xoay 3. Công thức diện tích và thể tích của hình nón 4. Giao tuyến của mặt tròn xoay và mặt phẳng B. MẶT TRỤ 1. Mặt trụ tròn xoay 2. Hình trụ tròn xoay 3. Công thức tính diện tích và thể tích của hình trụ 4. Tính chất C. MẶT CẦU 1. Định nghĩa 2. Vị trí tương đối của một điểm đối với mặt cầu 3. Vị trí tương đối của mặt phẳng và mặt cầu 4. Vị trí tương đối của đường thẳng và mặt cầu 5. Diện tích và thể tích mặt cầu 6. Một số khái niệm về mặt cầu ngoại tiếp khối đa diện

Nguồn: toanmath.com

Đọc Sách

Chuyên đề khoảng cách và thể tích khối đa diện - Hoàng Văn Phiên
Tài liệu gồm 17 trang hệ thống kiến thức từ lớp 8 đến 12 và bài tập các dạng toán trong chuyên đề khoảng cách và thể tích khối đa diện. A – ÔN TẬP KIẾN THỨC 1. Một số hệ thức lượng trong tam giác vuông 2. Một số hệ thức lượng trong tam giác thường 3. Các công thức tính diện tích 4. Quan hệ song song 5. Quan hệ vuông góc 6. Khoảng cách và góc 7. Thể tích khối đa diện [ads] B – CÁC DẠNG BÀI TẬP 1. Hình vẽ trong không gian 2. Khoảng cách trong không gian + Bài toán 1. Khoảng cách từ 1 điểm đến 1 mặt phẳng + Bài toán 2. Khoảng cách giữa hai đường thẳng chéo nhau 3. Bài toán thể tích khối đa diện + Bài toán 1. Đường cao khối đa diện + Bài toán 2. Tỉ số thể tích + Bài toán 3. Phân chia khối đa diện
Chuyên đề hình học không gian dành cho học sinh trung bình - yếu
Kỳ thi THPT Quốc Gia 2016 – 2017 đã cận kề, từ nhu cầu thực tế ôn luyện của các học sinh trung bình và yếu, các thầy cô giáo ở khắp mọi miền trong cả nước đã biên soạn bộ tài liệu ÔN TẬP KỲ THI THPTQG dành cho đối tượng học sinh trung bình. Chuyên đề HÌNH HỌC KHÔNG GIAN được nhóm 04 thầy cô: Lê Văn Định, Dương Phước Sang, Phùng Hoàng Em, Trần Thị Thu Thảo biên soạn nội dung. Hỗ trợ hình học thầy Lê Quang Hòa. Chuyên đề bao gồm 04 nội dung chính: + Phần 1: Đa diện – Thể tích khối đa diện + Phần 2: Mặt nón – Khối nón + Phần 3: Mặt cầu – Khối cầu + Phần 4: Mặt trụ – Khối trụ [ads] Với nội dung các câu hỏi thuộc các mức độ nhận biết và thông hiểu, nhằm giúp học sinh quen với các hình không gian cơ bản nhớ được công thức tính diện tích thể tích và các yếu tố liên quan đến các hình. Với nội dung các câu hỏi thuộc các mức độ nhận biết và thông hiểu, nhằm giúp học sinh quen với các hình không gian cơ bản nhớ được công thức tính diện tích thể tích và các yếu tố liên quan đến các hình.
Một số công thức giải nhanh phần thể tích khối chóp - Nguyễn Chiến
Tài liệu gồm 12 trang tuyển tập các công thức tính nhanh thể tích của các khối chóp thường gặp và bài tập ví dụ minh họa có giải chi tiết. Tài liệu trình bày công thức tính thể tích các dạng hình chóp sau: + Hình chóp SABC với các mặt phẳng (SAB), (SBC), (SAC) vuông góc với nhau từng đôi một, diện tích các tam giác SAB, SBC, SAC lần lượt là S1, S2, S3 + Hình chóp S.ABC có SA vuông góc với (ABC), hai mặt phẳng (SAB) và (SBC) vuông góc với nhau, góc BSC = α, góc ASB = β + Hình chóp đều S.ABC có đáy ABC là tam giác đều cạnh bằng a, cạnh bên bằng b + Hình chóp tam giác đều S.ABC có cạnh đáy bằng a và mặt bên tạo với mặt phẳng đáy góc + Hình chóp tam giác đều S.ABC có các cạnh bên bằng b và cạnh bên tạo với mặt phẳng đáy góc β + Hình chóp tam giác đều S.ABC có các cạnh đáy bằng a, cạnh bên tạo với mặt phẳng đáy góc β [ads] + Hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh bằng a, và SA = SB = SC = SD = b + Hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc tạo bởi mặt bên và mặt phẳng đáy là α + Hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, (SAB) = α, với α ∈ (π/4; π/2) + Hình chóp tứ giác đều S.ABCD có các cạnh bên bằng a, góc tạo bởi mặt bên và mặt đáy là α với α ∈ (0; π/2) + Hình chóp tam giác đều S.ABC có cạnh đáy bằng a. Gọi (P) là mặt phẳng đi qua A song song với BC và vuông góc với (SBC), góc giữa (P) với mặt phẳng đáy là α + Khối tám mặt đều có đỉnh là tâm các mặt của hình lập phương cạnh a + Khối tám mặt đều cạnh a. Nối tâm của các mặt bên ta được khối lập phương Bài tập minh họa áp dụng công thức Một số công thức giải nhanh phần tỉ lệ thể tích
Bài toán cực trị hình học không gian và các khối lồng nhau - Trần Đình Cư
Tài liệu gồm 31 trang hướng dẫn phương pháp giải dạng toán cực trị hình học không gian và các khối lồng nhau kèm theo bài tập minh họa có lời giải chi tiết. Trong quá trình tìm kiếm lời giải nhiều bài toán hình học, sẽ rất có lợi nếu chúng ta xem xét các phần tử biên, phần tử giới hạn nào đó, tức là phần tử mà tại đó mỗi đại lượng hình học có thể nhận giá trị lớn nhất hoặc giá trị nhỏ nhất, chẳng hạn như cạnh lớn nhất, cạnh nhỏ nhất của một tam giác; góc lớn nhất hoặc góc nhỏ nhất của một đa giác … Những tính chất của các phần tử biên, phần tử giới hạn nhiều khi giúp chúng ta tìm được lời giải thu gọn của bài toán. Phương pháp tiếp cận như vậy tới lời giải bài toán được gọi là nguyên tắc cực hạn. Như vậy bài toán cực trị hình học là cần thiết trong không gian, nó thường xuất hiện ở những câu hỏi khó trong phần thi trắc nghiệm THPT Quốc gia. [ads] Tóm tắt nội dung tài liệu : 1. Phương pháp Cơ sở của phương pháp cần kết hợp giữa các quan điểm tìm cực trị như sau 1. Sử dụng bất đẳng thức thông dụng 2. Bất đẳng thức cauchy cho các biến đại lượng không âm. 3. Bất đẳng thức schwartz cho các biến đại lượng tùy ý. 4. Sử dụng tính bị chặn của hàm lượng giác 5. Sử dụng đạo hàm để lập bảng biến thiên 6. Sử dụng các nguyên lý hình học cực hạn Một số ví dụ mẫu Câu hỏi và bài tập trắc nghiệm có đáp án và lời giải chi tiết