Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề đại lượng tỉ lệ nghịch, một số bài toán về đại lượng tỉ lệ nghịch

Nội dung Chuyên đề đại lượng tỉ lệ nghịch, một số bài toán về đại lượng tỉ lệ nghịch Bản PDF - Nội dung bài viết Chuyên đề Đại lượng tỉ lệ nghịch Chuyên đề Đại lượng tỉ lệ nghịch Tài liệu này gồm 18 trang, cung cấp lý thuyết chính, các dạng toán và bài tập về đại lượng tỉ lệ nghịch. Được thiết kế đặc biệt để hỗ trợ học sinh lớp 7 trong quá trình học tập môn Toán, chương trình Đại số chương 2: Hàm số và đồ thị. Mục đích chính của tài liệu là giúp học sinh: Kiến thức: Nắm vững định nghĩa của hai đại lượng tỉ lệ nghịch với nhau và nhận biết được một số ví dụ cụ thể. Hiểu rõ tính chất cơ bản của đại lượng tỉ lệ nghịch. Áp dụng phương pháp giải các bài toán liên quan đến đại lượng tỉ lệ nghịch. Kỹ năng: Nhận biết hai đại lượng tỉ lệ nghịch và biết cách tính hệ số tỉ lệ cũng như công thức biểu diễn chúng. Lập bảng giá trị tương ứng giữa hai đại lượng tỉ lệ nghịch và xác định tương quan tỉ lệ nghịch giữa chúng. Giải các bài toán về đại lượng tỉ lệ nghịch một cách thành thạo. Nội dung chính: I. LÝ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP: Dạng 1: Xác định tương quan giữa hai đại lượng tỉ lệ nghịch. Bài Toán 1: Nhận biết hai đại lượng tỉ lệ nghịch, tính hệ số tỉ lệ và công thức biểu diễn chúng. Bài Toán 2: Xác định tương quan tỉ lệ nghịch khi có bảng giá trị tương ứng giữa hai đại lượng. Dạng 2: Sử dụng tính chất của tỉ lệ nghịch để giải các bài toán. Dạng 3: Lập bảng giá trị tương ứng của hai đại lượng tỉ lệ nghịch. Dạng 4: Giải các bài toán đơn giản về đại lượng tỉ lệ nghịch. Dạng 5: Phân chia một số thành các phần tỉ lệ nghịch với các số cho trước. Hy vọng rằng tài liệu này sẽ giúp các học sinh lớp 7 nắm vững kiến thức và kỹ năng liên quan đến đại lượng tỉ lệ nghịch một cách hiệu quả.

Nguồn: sytu.vn

Đọc Sách

Phương pháp giải các dạng toán chuyên đề tam giác
Tài liệu gồm 48 trang, tổng hợp lý thuyết SGK, phân dạng và hướng dẫn giải các dạng toán chuyên đề tam giác trong chương trình Hình học 7. Khái quát nội dung tài liệu phương pháp giải các dạng toán chuyên đề tam giác: BÀI 8 . TỔNG BA GÓC CỦA MỘT TAM GIÁC. + Dạng 1. Tính số đo góc của một tam giác. + Dạng 2. Nhận biết một tam giác vuông, tìm các góc bằng nhau trong hình vẽ có tam giác vuông. + Dạng 3. Chứng minh hai đường thẳng song song bằng cách chứng minh hai góc bằng nhau. + Dạng 4. So sánh các góc dựa vào tính chất góc ngoài của tam giác. BÀI 9 . HAI TAM GIÁC BẰNG NHAU. + Dạng 1. Từ hai tam giác bằng nhau, xác định các cạnh bằng nhau, các góc bằng nhau. Tính độ dài đoạn thẳng, số đo góc. + Dạng 2. Viết kí hiệu về sự bằng nhau của hai tam giác. BÀI 10 . TRƯỜNG HỢP BẰNG NHAU THỨ NHẤT CỦA TAM GIÁC CẠNH – CẠNH – CẠNH (C.C.C). + Dạng 1. Vẽ tam giác biết độ dài ba cạnh. + Dạng 2. Tìm hoặc chứng minh hai tam giác bằng nhau theo trường hợp cạnh- cạnh- cạnh. Sắp xếp lại trình tự lời giải bài toán chứng minh hai tam giác bằng nhau. + Dạng 3. Sử dụng trường hợp bằng nhau cạnh- cạnh- cạnh để chứng minh hai góc bằng nhau. BÀI 11 . TRƯỜNG HỢP BẰNG NHAU THỨ HAI CỦA TAM GIÁC CẠNH – GÓC – CẠNH (C.G.C). + Dạng 1. Vẽ tam giác biết hai cạnh và góc xen giữa. + Dạng 2. Bổ sung thêm điều kiện để hai tam giác bằng nhau theo trường hợp cạnh – góc – cạnh. + Dạng 3. Tìm hoặc chứng minh hai tam giác bằng nhau theo trường hợp cạnh – góc – cạnh. Sắp xếp lại trình tự giải bài toán chứng minh hai tam giác bằng nhau. + Dạng 4. Sử dụng trường hợp bằng nhau cạnh – góc – cạnh để chứng minh hai đoạn thẳng bằng nhau, hai góc bằng nhau. BÀI 12 . TRƯỜNG HỢP BẰNG NHAU THỨ BA CỦA TAM GIÁC GÓC – CẠNH – GÓC (G.C.G). + Dạng 1. Vẽ tam giác biết một cạnh và hai góc kề. + Dạng 2. Tìm hoặc chứng minh hai tam giác bằng nhau theo trường hợp góc – cạnh – góc. + Dạng 3. Sử dụng trường hợp bằng nhau góc – cạnh – góc. + Dạng 4. Sử dụng nhiều trường hợp bằng nhau của tam giác. + Dạng 5. Tìm hoặc chứng minh hia tam giác vuông bằng nhau. + Dạng 6. Sử dụng trường hợp bằng nhau cạnh huyền – góc nhọn để chứng minh hai đoạn thẳng bằng nhau. [ads] BÀI 13 . TAM GIÁC CÂN. + Dạng 1. Vẽ tam giác cân, tam giác vuông cân, tam giác đều. + Dạng 2. Bổ sung điều kiện để hai tam giác, hai tam giác vuông cân, hai tam giác đều bằng nhau. + Dạng 3. Nhận biết một tam giác là tam giác cân, tam giác vuông cân, tam giác đều. + Dạng 4. Sử dụng định nghĩa tam giác cân, vuông cân, đều để suy ra các đoạn thẳng bằng nhau. + Dạng 5. Sử dụng tính chất của các tam giác cân, vuông cân, đều để tính số đo góc hoặc chứng minh hai góc bằng nhau. + Dạng 6. Chứng minh một tam giác là tam giác cân, vuông cân, đều để suy ra hai đoạn thẳng bằng nhau, hai góc bằng nhau. BÀI 14 . ĐỊNH LÝ PY – TA – GO. + Dạng 1. Tính độ dài một cạnh của tam giác vuông. + Dạng 2. Sử dụng định lý py-ta-go đảo để nhận biết tam giác vuông. BÀI 15 . CÁC TRƯỜNG HỢP BẰNG NHAU CỦA TAM GIÁC VUÔNG. + Dạng 1. Tìm hoặc chứng minh hai tam giác vuông bằng nhau. + Dạng 2. Bổ sung thêm điều kiện để hai tam giác vuông bằng nhau. + Dạng 3. Sử dụng các trường hợp bằng nhau của tam giác vuông để chứng minh hai đoạn thẳng bằng nhau, hai góc bằng nhau. ÔN TẬP CHƯƠNG 2. + Dạng 1. Chọn câu phát biểu đúng, cho một hệ quả, tìm định lí trực tiếp suy ra hệ quả đó. + Dạng 2. Sử dụng trường hợp bằng nhau của tam giác để chứng minh hai đoạn thằng bằng nhau, hai góc bằng nhau; từ đó nhận biết tia phân giác của góc, đường trung trực của đoạn thẳng, hai đường thẳng vuông góc. + Dạng 3. Nhận biết tam giác vuông, tam giác cân, tam giác vuông cân, tam giác đều. + Dạng 4. Tính độ dài cạnh của tam giác vuông.
Chuyên đề tỉ lệ thức và tính chất của dãy tỉ số bằng nhau
Tỉ lệ thức và tính chất của dãy tỉ số bằng nhau là một nội dung quan trọng trong chương trình Đại số lớp 7; để giúp các em tìm hiểu chuyên sâu chủ đề này, THCS. giới thiệu tài liệu chuyên đề tỉ lệ thức và tính chất của dãy tỉ số bằng nhau; tài liệu gồm có 50 trang. Khái quát nội dung tài liệu chuyên đề tỉ lệ thức và tính chất của dãy tỉ số bằng nhau: I. Tóm tắt lý thuyết chung 1. Định nghĩa, tính chất của tỉ lệ thức. 2. Tính chất của dãy tỉ số bằng nhau. II. Các dạng toán thường gặp Chủ đề 1. Tìm số hạng chưa biết. + Dạng toán 1. Tìm một số hạng chưa biết. + Dạng toán 2. Tìm nhiều số hạng chưa biết. Chủ đề 2. Chứng minh đẳng thức. + Dạng toán 1. Chứng tỏ rằng: ad = bc. + Dạng toán 2. Đặt k là giá trị chung của các tỷ số a/b; c/d. Tính các tỷ số x/y; m/n theo k. + Dạng toán 3. Dùng biến đổi đại số và tính chất của dãy tỉ số bằng nhau để biến đổi từ vế này thành vế kia. Chủ đề 3. Tính giá trị của biểu thức. Chủ đề 4. Tính giá trị của biểu thức. Chủ đề 5. Các bài toán về tỷ lệ thức và chia tỷ lệ. Chủ đề 6. Sai lầm thường gặp khi giải toán tỷ lệ thức. III. Bài tập luyện tập tổng hợp IV. Hướng dẫn giải bài tập
Tài liệu tự học Toán 7 - Nguyễn Chín Em
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh tài liệu tự học Toán 7 do thầy Nguyễn Chín Em sưu tầm và biên soạn; tài liệu gồm 381 trang trình bày đầy đủ lý thuyết SGK, phân dạng toán và hướng dẫn giải các bài toán Đại số và Hình học lớp 7. Khái quát nội dung tài liệu tự học Toán 7 – Nguyễn Chín Em: PHẦN I . ĐẠI SỐ. CHƯƠNG 1 . SỐ HỮU TỈ. SỐ THỰC. 1 TẬP HỢP R CÁC SỐ HỮU TỈ. + Dạng 1. Biểu diễn số hữu tỉ. + Dạng 2. So sánh hai số hữu tỉ. 2 CỘNG, TRỪ SỐ HỮU TỈ. + Dạng 1. Cộng, trừ số hữu tỉ. + Dạng 2. Mở đầu về phương trình. + Dạng 3. Biểu diễn một số hữu tỉ thành tổng hoặc hiệu của các số hữu tỉ khác. 3 NHÂN, CHIA SỐ HỮU TỈ. 4 GIÁ TRỊ TUYỆT ĐỐI CỦA MỘT SỐ HỮU TỈ. CỘNG, TRỪ, NHÂN, CHIA SỐ THẬP PHÂN. 5 LŨY THỪA CỦA MỘT SỐ HỮU TỈ. 6 TỈ LỆ THỨC. 7 SỐ THẬP PHÂN HỮU HẠN. SỐ THẬP PHÂN VÔ HẠN TUẦN HOÀN. LÀM TRÒN SỐ. 8 SỐ VÔ TỈ. KHÁI NIỆM VỀ CĂN BẬC HAI. CHƯƠNG 2 . HÀM SỐ VÀ ĐỒ THỊ. 1 ĐẠI LƯỢNG TỈ LỆ THUẬN. MỘT SỐ BÀI TOÁN VỀ ĐẠI LƯỢNG TỈ LỆ THUẬN. + Dạng 1. Sử dụng định nghĩa và tính chất của đại lượng tỉ lệ thuận để giải toán. + Dạng 2. Một số bài toán về đại lượng tỉ lệ thuận. 2 ĐẠI LƯỢNG TỈ LỆ NGHỊCH. MỘT SỐ BÀI TOÁN VỀ ĐẠI LƯỢNG TỈ LỆ NGHỊCH. + Dạng 1. Sử dụng định nghĩa và tính chất của đại lượng tỉ lệ nghịch để giải toán. + Dạng 2. Một số bài toán về đại lượng tỉ lệ nghịch. 3 HÀM SỐ. 4 MẶT PHẲNG TỌA ĐỘ. 5 ĐỒ THỊ HÀM SỐ y = ax VỚI a ≠ 0. CHƯƠNG 3 . THỐNG KÊ. 1 THU THẬP SỐ LIỆU THỐNG KÊ. 2 BẢNG TẦN SỐ CÁC GIÁ TRỊ CỦA DẤU HIỆU. 3 BIỂU ĐỒ. 4 SỐ TRUNG BÌNH CỘNG. CHƯƠNG 4 . BIỂU THỨC ĐẠI SỐ. 1 KHÁI NIỆM VỀ BIỂU THỨC ĐẠI SỐ. 2 GIÁ TRỊ CỦA MỘT BIỂU THỨC ĐẠI SỐ. 3 ĐƠN THỨC. 4 ĐƠN THỨC ĐỒNG DẠNG. 5 ĐA THỨC. + Dạng 1. Nhận biết đa thức. + Dạng 2. Thu gọn đa thức. + Dạng 3. Tìm bậc của đa thức. 6 CỘNG TRỪ ĐA THỨC. + Dạng 1. Tính tổng, hiệu của hai đa thức. + Dạng 2. Tìm đa thức thỏa mãn đẳng thức. + Dạng 3. Bài toán liên quan đến chia hết. 7 ĐA THỨC MỘT BIẾN. 8 CỘNG, TRỪ ĐA THỨC MỘT BIẾN. 9 NGHIỆM CỦA ĐA THỨC MỘT BIẾN. [ads] PHẦN II . HÌNH HỌC. CHƯƠNG 1 . ĐƯỜNG THẲNG VUÔNG GÓCĐƯỜNG THẲNG SONG SONG. 1 HAI GÓC ĐỐI ĐỈNH. 2 HAI ĐƯỜNG THẲNG VUÔNG GÓC. 3 CÁC GÓC TẠO BỞI MỘT ĐƯỜNG THẲNG CẮT HAI ĐƯỜNG THẲNG. + Góc so le trong. Góc đồng vị. + Tính chất. 4 HAI ĐƯỜNG THẲNG SONG SONG. 5 TỪ VUÔNG GÓC ĐẾN SONG SONG. CHƯƠNG 2 . TAM GIÁC. 1 TỔNG BA GÓC CỦA MỘT TAM GIÁC. + Giải bài toán định lượng. + Bài tập luyện tập. 2 HAI TAM GIÁC BẰNG NHAU. 3 HAI TAM GIÁC BẰNG NHAU CẠNH – CẠNH – CẠNH. + Dạng 1. Chứng minh hai tam giác bằng nhau. + Dạng 2. Sử dụng hai tam giác bằng nhau để giải toán. + Dạng 3. Vẽ tam giác ABC biết AB = c, BC = a, AC = b. 4 HAI TAM GIÁC BẰNG NHAU CẠNH – GÓC – CẠNH. + Dạng 1. Chứng minh hai tam giác bằng nhau. + Dạng 2. Vẽ tam giác ABC biết AB = c, AC = b và góc BAC = α. 5 HAI TAM GIÁC BẰNG NHAU GÓC – CẠNH – GÓC. + Dạng 1. Chứng minh hai tam giác bằng nhau. + Dạng 2. Sử dụng hai tam giác bằng nhau để giải toán. + Dạng 3. Vẽ tam giác ABC biết AB = c, A = α, B = β. 6 TAM GIÁC CÂN. + Dạng 1. Chứng minh tính chất của tam giác cân, tam giác đều. + Dạng 2. Chứng minh một tam giác là tam giác cân, tam giác đều. + Dạng 3. Sử dụng tam giác cân, tam giác đều để giải toán định lượng. + Dạng 4. Sử dụng tam giác cân giải bài toán định tính. 7 ĐỊNH LÍ PY – TA – GO. 8 CÁC TRƯỜNG HỢP BẰNG NHAU CỦA TAM GIÁC VUÔNG. CHƯƠNG 3 . QUAN HỆ GIỮA CÁC YẾU TỐ TRONG TAM GIÁC.CÁC ĐƯỜNG ĐỒNG QUY CỦA TAM GIÁC. 1 QUAN HỆ GIỮA GÓC VÀ CẠNH ĐỐI DIỆN TRONG MỘT TAM GIÁC. + Dạng 1. Chứng minh các tính chất về mối quan hệ giữa góc và cạnh đối diện trong một tam giác. + Dạng 2. Sử dụng tính chất về mối quan hệ giữa góc và cạnh đối diện trong một tam giác giải toán. 2 QUAN HỆ GIỮA ĐƯỜNG VUÔNG GÓC VÀ ĐƯỜNG XIÊN, ĐƯỜNG XIÊN VÀ HÌNH CHIẾU. + Dạng 1. Chứng minh các tính chất về mối quan hệ giữa các đường xiên và các hình chiếu của chúng. + Dạng 2. Sử dụng tính chất về mối quan hệ giữa các đường xiên và các hình chiếu của chúng giải toán. 3 QUAN HỆ GIỮA BA CẠNH CỦA MỘT TAM GIÁC – BẤT ĐẲNG THỨC TAM GIÁC. + Dạng 1. Chứng minh bất đẳng thức tam giác. + Dạng 2. Sử dụng bất đẳng thức tam giác để giải toán. 4 TÍNH CHẤT BA ĐƯỜNG TRUNG TUYẾN CỦA TAM GIÁC. + Dạng 1. Tính độ dài đoạn thẳng. + Dạng 2. Chứng minh tính chất hình học. 5 TÍNH CHẤT TIA PHÂN GIÁC CỦA MỘT GÓC. + Dạng 1. Chứng minh tính chất tia phân giác của một góc. + Dạng 2. Chứng minh một tia là tia phân giác của một góc. + Dạng 3. Dựng tia phân giác của một góc. + Dạng 4. Sử dụng tính chất tia phân giác của một góc để giải toán. 6 TÍNH CHẤT BA ĐƯỜNG PHÂN GIÁC CỦA TAM GIÁC. 7 TÍNH CHẤT ĐƯỜNG TRUNG TRỰC CỦA MỘT ĐOẠN THẲNG. + Dạng 1. Chứng minh tính chất đường trung trực. + Dạng 2. Sử dụng tính chất đường trung trực để giải toán. 8 TÍNH CHẤT BA ĐƯỜNG TRUNG TRỰC CỦA TAM GIÁC. + Dạng 1. Chứng minh tính chất ba đường trung trực của tam giác. + Dạng 2. Sử dụng tính chất của ba đường trung trực của tam giác để giải toán. 9 TÍNH CHẤT BA ĐƯỜNG CAO CỦA TAM GIÁC.
Kiến thức và bài tập đường thẳng vuông góc và đường thẳng song song
Tài liệu gồm 22 trang được biên soạn bởi tác giả Toán Họa, tổng hợp kiến thức và bài tập đường thẳng vuông góc và đường thẳng song song trong chương trình Hình học lớp 7 chương 1. Khái quát nội dung tài liệu kiến thức và bài tập đường thẳng vuông góc và đường thẳng song song: BÀI 1 . HAI GÓC ĐỐI ĐỈNH + Hai góc đối đỉnh là hai góc mà mỗi cạnh của góc này là tia đối của một cạnh góc kia. + Hai góc đối đỉnh thì bằng nhau. + Mỗi góc chỉ có một góc đối đỉnh với nó. + Hai góc bằng nhau chưa chắc đã đối đỉnh. BÀI 2 . HAI GÓC ĐỐI ĐỈNH + Hai đường thẳng vuông góc là hai đường thẳng cắt nhau và một trong các góc tạo thành là góc vuông. + Qua một điểm cho trước, có một và chỉ một đường thẳng vuông góc với một đường thẳng cho trước. + Đường trung trực của một đoạn thẳng là đường thẳng vuông góc với đoạn thẳng đó tại trung điểm của nó. [ads] BÀI 3 . CÁC GÓC TẠO BỞI MỘT ĐƯỜNG THẲNG CẮT HAI ĐƯỜNG THẲNG + Hai đường thẳng vuông góc là hai đường thẳng cắt nhau và một trong các góc tạo thành là góc vuông. + Nếu hai đường thẳng cắt một đường thẳng thứ ba và trong các góc tạo thành có một cặp góc so le trong bằng nhau thì: Hai góc so le trong còn lại bằng nhau, Hai góc đồng vị bằng nhau, Hai góc trong cùng phía bù nhau. BÀI 4 . HAI ĐƯỜNG THẲNG SONG SONG + Hai đường thẳng song song (trong mặt phẳng ) là hai đường thẳng không có điểm chung. + Nếu đường thẳng c cắt hai đường thẳng a, b và trong các góc tạo thành có một cặp góc so le trong bằng nhau (hoặc một cặp góc đồng vị bằng nhau) thì a và b song song với nhau. + Hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba thì chúng song song. BÀI 5 . TIÊN ĐỀ ƠCLIT VỀ ĐƯỜNG THẲNG SONG SONG + Qua một điểm nằm ngoài một đường thẳng, chỉ có một đường thẳng song song với đường thẳng đó. + Nếu hai đường thẳng song song bị cắt bởi một đường thẳng thứ ba thì: Hai góc so le trong bằng nhau, Hai góc đồng vị bằng nhau. + Hai góc trong cùng phía bù nhau. BÀI 6 . TỪ VUÔNG GÓC TỚI SONG SONG + Nếu hai đường thẳng (phân biệt) cùng vuông góc với một đường thẳng thứ ba thì song song với nhau. + Nếu một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó cũng vuông góc với đường kia. + Hai đường thẳng (phân biệt) cùng song song với một đường thẳng thứ ba thì chúng song song với nhau. BÀI 7 . ĐỊNH LÍ + Một tính chất được khẳng định là đúng bằng suy luận gọi là một định lí. + Giả thiết của định lí là điều cho biết. Kết luận của định lí là điều được suy ra. + Chứng minh định lí là dùng luận để từ giả thiết suy ra kết luận. ĐỀ KIỂM TRA HÌNH HỌC 7 CHƯƠNG 1