Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề rà soát lớp 9 môn Toán năm 2022 2023 trường THCS Tản Hồng Hà Nội

Nội dung Đề rà soát lớp 9 môn Toán năm 2022 2023 trường THCS Tản Hồng Hà Nội Bản PDF Đề rà soát lớp 9 môn Toán năm 2022 - 2023 trường THCS Tản Hồng Hà Nội

Chào đón quý thầy cô giáo và các em học sinh lớp 9! Sytu xin giới thiệu đến bạn đề rà soát chất lượng học sinh môn Toán lớp 9 năm học 2022 - 2023 tại trường THCS Tản Hồng, Ba Vì, Hà Nội. Kỳ thi sẽ diễn ra vào ngày 27 tháng 05 năm 2023, với đề thi kèm đáp án và hướng dẫn chấm điểm.

Dưới đây là một số câu hỏi trong đề rà soát Toán lớp 9 năm 2022 - 2023 trường THCS Tản Hồng, Hà Nội:

1. Một ca nô di chuyển xuôi dòng từ A đến B sau đó ngược dòng từ B về A mất tổng cộng 5 giờ. Nếu quãng đường sông từ A đến B là 60 km và vận tốc dòng nước là 5km/h, hãy tính vận tốc thực của ca nô khi nước đứng yên.

2. Chiếc quả bóng tennis có đường kính 6,5 cm. Hãy tính diện tích nguyên liệu cần để làm mặt xung quanh của quả bóng.

3. Cho tam giác ABC nhọn nội tiếp đường tròn (O). Kẻ đường cao AD, BE, CF cắt nhau tại H và đường kính AQ cắt cạnh BC tại I. Hãy chứng minh một số điều đề ra trong đề thi.

File Word dành cho quý thầy cô giáo: [Download file tại đây]

Hãy chuẩn bị kỹ càng và tự tin tham gia kỳ thi đề rà soát Toán lớp 9 tại trường THCS Tản Hồng. Chúc các em học sinh đạt kết quả cao và thành công trong hành trình học tập của mình!

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2021 - 2022 sở GDĐT Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp tỉnh năm học 2021 – 2022 sở Giáo dục và Đào tạo UBND tỉnh Bắc Ninh; kỳ thi được diễn ra vào thứ Tư ngày 16 tháng 02 năm 2022.
Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 trường THCS Cầu Giấy - Hà Nội
Đề thi học sinh giỏi Toán 9 năm 2021 – 2022 trường THCS Cầu Giấy – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút; kỳ thi được diễn ra vào ngày … tháng 02 năm 2022. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2021 – 2022 trường THCS Cầu Giấy – Hà Nội : + Cho a b c là các số thực thỏa mãn 0 a b c 1. Tìm giá trị lớn nhất của biểu thức T. + Cho tam giác nhọn ABC với AB là cạnh nhỏ nhất, gọi D là trung điểm cạnh AB và P là điểm trong tam giác sao cho CAP = CBP = ACB. Gọi M, N lần lượt là chân đường vuông góc hạ từ P xuống BC và AC. Đường thẳng đi qua M và song song với AC cắt đường thẳng đi qua N và song song với BC tại K. Gọi E là giao điểm của KN và AP; F là giao điểm của KM và BP. a. Chứng minh rằng E và F lần lượt là trung điểm của AP và BP. b. Chứng minh rằng D nằm trên trung trực của MN. c. Chứng minh rằng MDN = 2MKN. + Có 27 con Robot tham gia một cuộc đua. Trong mỗi vòng sẽ có 3 con tham gia, mỗi con Robot chạy với tốc độ cố định, không đổi giữa các vòng đua và tốc độ của mỗi con Robot là đôi một khác nhau. Sau mỗi vòng, người ta ghi lại thứ tự về thành tích của các Robot tham gia vòng đua đó. Hỏi 14 vòng đua có đủ để xác định thứ tự của hai con Robot chạy nhanh nhất hay không?
Đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2021 - 2022 sở GDĐT Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2021 – 2022 sở Giáo dục và Đào tạo UBND tỉnh Thái Nguyên. Trích dẫn Đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2021 – 2022 sở GD&ĐT Thái Nguyên : + Cho phương trình x2 – 2(m + 1)x + 4m − m2 = 0 (m là tham số). a. Giải phương trình với m = 1. b. Chứng minh rằng với mọi giá trị của m phương trình luôn có hai nghiệm phân biệt. c. Tìm các giá trị của m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn: x12 + 2(m + 1)x2 – 4 = 0. + Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O). Gọi K là hình chiếu vuông góc của A trên cạnh BC. E, F lần lượt là hình chiếu vuông góc của K trên các cạnh AB, AC. a. Chứng minh AEF = ACB. Từ đó chỉ ra tứ giác BCFE nội tiếp đường tròn. b. Gọi I là giao điểm của hai đường thẳng BC và EF. Chứng minh rằng IK2 = IB.IC. c. Đường thẳng IA cắt đường tròn (O) tại điểm J (J khác A). Gọi D là tâm đường tròn ngoại tiếp tứ giác BCFE. Chứng minh rằng ba điểm D, K, J thẳng hàng. + Chứng minh rằng nếu a là số tự nhiên không chia hết cho 5 và không chia hết cho 7 thì (a4 − 1)(a4 + 15a2 + 1) chia hết cho 35. Cho m, n, p là ba số nguyên dương thỏa mãn mn = p(m + n) và m, p là hai số nguyên tố cùng nhau. Chứng minh rằng mnp là số chính phương.
Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2021 - 2022 sở GDĐT Hải Dương
Thứ Năm ngày 20 tháng 01 năm 2022, sở Giáo dục và Đào tạo tỉnh Hải Dương tổ chức kì thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 THCS năm học 2021 – 2022. Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2021 – 2022 sở GD&ĐT Hải Dương gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút.