Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giữa học kỳ 2 Toán 9 năm 2023 - 2024 trường THCS Trường Sơn - Hải Phòng

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kỳ 2 môn Toán 9 năm học 2023 – 2024 trường THCS Trường Sơn, huyện An Lão, thành phố Hải Phòng; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề giữa học kỳ 2 Toán 9 năm 2023 – 2024 trường THCS Trường Sơn – Hải Phòng : + Nhiệt độ ở mặt đất đo được khoảng 300 C. Biết rằng cứ lên 1km thì nhiệt độ giảm đi 50. a) Hãy lập hàm số T theo h, trong đó T là nhiệt độ khi ở độ cao h(km) so với mặt đất (tính bằng (0C)) và h tính bằng ki-lô-mét (km). b) Nếu đo được nhiệt độ tại vị trí đó là 150 C thì vị trí đó cách mặt đất là bao nhiêu km? + Bài toán thực tế: Buổi họp tổng kết năm học 2022-2023 của trường THCS A dự kiến có 120 người dự họp, nhưng khi họp có 160 người tham dự nên phải kê thêm 2 dãy ghế và mỗi dãy phải kê thêm một ghế nữa thì vừa đủ. Tính số dãy ghế dự định lúc đầu. Biết rằng số dãy ghế lúc đầu trong phòng nhiều hơn 20 dãy ghế và số ghế trên mỗi dãy ghế là bằng nhau. + Cho tam giác ABC nhọn (AB AC) nội tiếp đường tròn O các đường cao AD BE và CF cắt nhau tại H. Gọi giao điểm của AD với (O) là I (I khác A). a) Chứng minh bốn điểm B F E C cùng thuộc một đường tròn. Xác định tâm M của đường tròn này. b) Tia IE cắt đường tròn (O) tại J (J khác I), BJ cắt EF tại K, vẽ EL vuông góc với AB tại L. Chứng minh F B BJI E và BL BA BK BJ. c) Gọi N là trung điểm của đoạn thẳng AH. Chứng minh ba điểm N, K, M thẳng hàng.

Nguồn: toanmath.com

Đọc Sách

Đề giữa học kì 2 Toán 9 năm 2022 - 2023 trường THCS Yên Nghĩa - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2022 – 2023 trường THCS Yên Nghĩa, quận Hà Đông, thành phố Hà Nội. Trích dẫn Đề giữa học kì 2 Toán 9 năm 2022 – 2023 trường THCS Yên Nghĩa – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Nếu hai vòi nước cùng chảy vào một bể không có nước thì sau 6 giờ sẽ đầy bể. Nếu mở vòi thứ nhất trong 3 giờ rồi khóa lại và mở vòi thứ hai trong 2 giờ thì cả hai vòi chảy được 2/5 bể. Hỏi nếu mỗi vòi chảy một mình thì trong bao lâu mới đầy bể? + Một cầu trượt trong công viên có độ dốc là 28 độ và có độ cao là 2,1m. Tính độ dài của mặt cầu trượt (làm tròn kết quả đến chữ số thập phân thứ nhất). + Cho điểm A nằm bên ngoài đường tròn (O). Từ A kẻ hai tiếp tuyến AB, AC với đường tròn đó (B, C là các tiếp điểm). Gọi H là trung điểm của AB. Đường thẳng HC cắt đường tròn (O) tại K (K khác C). a) Chứng minh bốn điểm A, B, O, C cùng thuộc một đường tròn. b) Chứng minh HB2 = HK.HC c) Gọi M là điểm đối xứng với K qua H. Chứng minh MO là tia phân giác của góc BMC.
Đề giữa kỳ 2 Toán 9 năm 2022 - 2023 trường THCS Nguyễn Trường Tộ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi giữa học kỳ 2 môn Toán 9 năm học 2022 – 2023 trường THCS Nguyễn Trường Tộ, thành phố Hà Nội; đề thi hình thức 100% tự luận, thời gian làm bài 90 phút. Trích dẫn Đề giữa kỳ 2 Toán 9 năm 2022 – 2023 trường THCS Nguyễn Trường Tộ – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một ca nô chạy xuôi dòng 63km và ngược dòng 30km hết tất cả 5 giờ. Nếu cũng trên khúc sông đó, ca nô chạy xuôi dòng 42km và chạy ngược dòng 45km thì sẽ hết 5 giờ. Tính vận tốc thực của ca nô và vận tốc của dòng nước. + Cho hệ phương trình. a) Giải hệ phương trình với m = -5. b) Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x – y = 1. + Cho tam giác ABC nhọn nội tiếp đường tròn (O). Trong tam giác ABC vẽ các đường cao AD, BE, CF cắt nhau tại H. 1) Chứng minh tứ giác AEHF nội tiếp 2) Chứng minh AF.AB = AC.AE 3) Gọi I, K lần lượt là hình chiếu của D trên HB và HC. Chứng minh IK // EF và IK vuông góc AO.
Đề giữa học kì 2 Toán 9 năm 2022 - 2023 trường THCS Đoàn Thị Điểm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2022 – 2023 trường THCS Đoàn Thị Điểm, quận Nam Từ Liêm, thành phố Hà Nội (mã đề 002). Trích dẫn Đề giữa học kì 2 Toán 9 năm 2022 – 2023 trường THCS Đoàn Thị Điểm – Hà Nội : + Giải bài toán sau bằng cách lập hệ phương trình: Theo kế hoạch hai tổ sản xuất 600 sản phẩm trong một thời gian nhất định. Do áp dụng kĩ thuật mới nên tổ I đã vượt mức 18% và tổ II đã vượt mức 21%. Vì vậy trong thời gian quy định họ đã hoàn thành vượt mức 120 sản phẩm. Hỏi số sản phẩm được giao của mỗi tổ? + Cho đường tròn (O) đường kính AB và điểm E nằm giữa O và A. Kẻ dây MN vuông góc với AB tại E. Trên cung nhỏ BM lấy điểm C bất kì (C khác B và M). Kẻ MF vuông góc với BC tại F. Đường thẳng NC cắt MF tại D. a) Chứng minh tứ giác BEMF là tứ giác nội tiếp. b) Chứng minh EF song song với CN và tam giác BMD là tam giác cân. c) Tìm vị trí của điểm C để diện tích tam giác BND lớn nhất. + Cho các số thực dương a, b, c thỏa mãn a + b + c = 4. Tìm giá trị nhỏ nhất của biểu thức P = (a + b)/abc.
Đề giữa kì 2 Toán 9 năm 2022 - 2023 trường THCS Tam Khương - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2022 – 2023 trường THCS Tam Khương, quận Đống Đa, thành phố Hà Nội. Trích dẫn Đề giữa kì 2 Toán 9 năm 2022 – 2023 trường THCS Tam Khương – Hà Nội : + Giải bài toán bằng cách lập phương hoặc hệ phương trình: Trong tháng thứ nhất hai tổ sản xuất được 600 sản phẩm. Do cải tiến kĩ thuật nên sang tháng thứ hai, tổ I đã vượt mức 10% và tổ II đã vượt mức 20%. Vì vậy tháng thứ hai cả hai tổ sản xuất được 685 sản phẩm. Hỏi trong tháng thứ nhất mỗi tổ sản xuất được bao nhiêu sản phẩm? + Cho hàm số y = x2 có đồ thị là parabol (P) và hàm số y = 2x + 3 có đồ thị là đường thẳng (d). a) Vẽ đồ thị hai hàm số trên cùng một hệ trục tọa độ Oxy. b) Gọi M và N là giao điểm của (d) với (P). Tính diện tích tam giác OMN. + Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Từ A kẻ tiếp tuyến AM, AN tới đường tròn (M, N là các tiếp điểm). 1. Chứng minh: Bốn điểm A, M, O, N cùng thuộc một đường tròn. 2. Trên cung nhỏ MN lấy điểm B khác M, N và B không là điểm chính giữa cung MN. Tia AB cắt đường tròn (O) tại điểm thứ hai C. Chứng minh: AM² = AB.AC. 3. Gọi H là giao điểm của AO và MN. Chứng minh: AHB = ACO.