Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giao lưu HSG lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Tam Dương Vĩnh Phúc

Nội dung Đề giao lưu HSG lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Tam Dương Vĩnh Phúc Bản PDF - Nội dung bài viết Đề giao lưu HSG lớp 8 môn Toán năm 2016-2017 phòng GD ĐT Tam Dương Vĩnh Phúc Đề giao lưu HSG lớp 8 môn Toán năm 2016-2017 phòng GD ĐT Tam Dương Vĩnh Phúc Chúng tôi xin giới thiệu đến quý thầy cô và các em học sinh lớp 8 đề giao lưu HSG Toán lớp 8 năm 2016-2017 của phòng GD&ĐT Tam Dương - Vĩnh Phúc. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn một số câu trong đề giao lưu HSG Toán lớp 8 năm 2016-2017 phòng GD&ĐT Tam Dương - Vĩnh Phúc: - Cho tam giác ABC, đường trung tuyến AM. Qua điểm D thuộc cạnh BC, vẽ đường thẳng song song với AM cắt đường thẳng AB và AC lần lượt tại E và F. Chứng minh rằng DE + DF = 2AM. - Đường thẳng qua A song song với BC cắt EF tại N. Chứng minh rằng N là trung điểm của EF. - Trong một đề thi có 3 bài toán A, B, C. Có 25 học sinh mỗi người đều đã giải được ít nhất một trong 3 bài đó. Hỏi có bao nhiêu thí sinh chỉ giải được bài B? - Cho hai đa thức A = n^6 + 10n^4 + n^3 + 98n - 6n^5 - 26 và B = 1 + n^3 - n. Chứng minh với mọi số nguyên n, thương của phép chia A cho B là bội số của 6. Hy vọng đề giao lưu này sẽ giúp các em học sinh lớp 8 củng cố kiến thức và chuẩn bị tốt cho kỳ thi HSG sắp tới. Chúc các em học tốt!

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát HSG Toán 8 năm 2023 - 2024 phòng GDĐT Ninh Giang - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát năng lực học sinh giỏi môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Ninh Giang, tỉnh Hải Dương; kỳ thi được diễn ra vào ngày 27 tháng 01 năm 2024. Trích dẫn Đề khảo sát HSG Toán 8 năm 2023 – 2024 phòng GD&ĐT Ninh Giang – Hải Dương : + Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Kẻ HM vuông góc với AB (M AB), HN vuông góc với AC (N AC) a) Chứng minh BM CN 1 AB AC b) Gọi I là trung điểm HC. Qua H kẻ đường thẳng vuông góc với AI cắt AB tại E. Chứng minh B là trung điểm AE c) Trên tia đối của tia BC lấy điểm S. Tia SA cắt HM, HN lần lượt tại P và Q. Chứng minh BP song song với CQ. + Đa thức Q x nếu chia cho x − 1 được số dư bằng 4, nếu chia cho x − 3 được số dư bằng 14. Tìm đa thức dư của phép chia Q x cho x 1 3. + Tìm số nguyên n sao 2 n 2n 1 4 là số nguyên tố.
Đề khảo sát HSG Toán 8 năm 2023 - 2024 trường THCS Song Mai - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát học sinh giỏi môn Toán 8 năm học 2023 – 2024 trường THCS Song Mai, thành phố Bắc Giang, tỉnh Bắc Giang; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát HSG Toán 8 năm 2023 – 2024 trường THCS Song Mai – Bắc Giang : + Tìm giá trị nhỏ nhất của biểu thức 2 A x y xy y x 13 4 2 16 2019. + Chứng minh rằng: 3 2 n 3 chia hết cho 48 với mọi số nguyên lẻ n. + Cho tam giác ABC vuông tại A AB AC đường cao AH. Gọi D là điểm đối xứng của A qua H. Đường thẳng qua D song song với AB cắt BC và AC lần lượt ở M và N. a) Chứng minh tứ giác ABDM là hình thoi. b) Chứng minh AM vuông góc với CD. c) Gọi I là trung điểm của MC chứng minh rằng IN vuông góc HN.
Đề giao lưu HSG Toán 8 năm 2023 - 2024 phòng GDĐT Bá Thước - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu học sinh giỏi cấp huyện môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Bá Thước, tỉnh Thanh Hoá; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề giao lưu HSG Toán 8 năm 2023 – 2024 phòng GD&ĐT Bá Thước – Thanh Hoá : + Cho ba số nguyên x, y, z thỏa mãn 22 2 xy z 2. Chứng minh rằng 2 2 x y chia hết cho 48. + Cho ∆ABC vuông tại A có 0 ABC 75 trên cạnh AC lấy 2 điểm E và P sao cho ABE EBP PBC. Gọi I là chân đường vuông góc hạ từ C xuống đường thẳng BP, đường thẳng CI cắt BE ở F. 1. Chứng minh: ∆ECF cân. 2. Trên tia đối tia EB lấy điểm K sao cho EK = BC, tính số đo các góc của ∆BCK. 3. Gọi H là hình chiếu vuông góc của C trên BK, D là trung điểm của đoạn CH, L là hình chiếu vuông góc của H trên BD. Chứng minh KL vuông góc với LC. + Cho các số a, b, c khác 0 và đôi một khác nhau thoả mãn.
Đề giao lưu HSG Toán 8 năm 2023 - 2024 phòng GDĐT Quảng Xương - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu học sinh giỏi môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Quảng Xương, tỉnh Thanh Hoá; kỳ thi được diễn ra vào ngày 27 tháng 01 năm 2024. Trích dẫn Đề giao lưu HSG Toán 8 năm 2023 – 2024 phòng GD&ĐT Quảng Xương – Thanh Hoá : + Chọn ngẫu nhiên hai số nguyên dương nhỏ hơn 13. Tính xác suất để hai số được chọn là hai số nguyên tố trong đó có một số chẵn và một số lẻ. + Cho a là số nguyên dương và b là ước nguyên dương của 2a2. Chứng minh rằng: a2 + b không là số chính phương. + Cho tam giác ABC vuông cân tại A. Trên cạnh BC lấy điểm M bất kì. Kẻ ME vuông góc với AB tại E, MF vuông góc với AC tại F. Qua B kẻ đường thẳng (d1) song song với AC, qua C kẻ đường thẳng (d2) song song với AB. Gọi D là giao điểm của (d1) và (d2). 1. Chứng minh: tứ giác AEMF là hình chữ nhật và tổng EM/AC + FM/AB không phụ thuộc vào vị trí điểm M. 2. Gọi O là giao điểm của AM và EF, I là giao điểm của DE với BF. Chứng minh DE vuông góc với BF tại I và OI = OM. 3. Kí hiệu S1 là diện tích tam giác BEM; S2 là diện tích tam giác CFM. Xác định vị trí điểm M để S1, S2 lớn nhất.