Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giao lưu HSG lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Tam Dương Vĩnh Phúc

Nội dung Đề giao lưu HSG lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Tam Dương Vĩnh Phúc Bản PDF - Nội dung bài viết Đề giao lưu HSG lớp 8 môn Toán năm 2016-2017 phòng GD ĐT Tam Dương Vĩnh Phúc Đề giao lưu HSG lớp 8 môn Toán năm 2016-2017 phòng GD ĐT Tam Dương Vĩnh Phúc Chúng tôi xin giới thiệu đến quý thầy cô và các em học sinh lớp 8 đề giao lưu HSG Toán lớp 8 năm 2016-2017 của phòng GD&ĐT Tam Dương - Vĩnh Phúc. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn một số câu trong đề giao lưu HSG Toán lớp 8 năm 2016-2017 phòng GD&ĐT Tam Dương - Vĩnh Phúc: - Cho tam giác ABC, đường trung tuyến AM. Qua điểm D thuộc cạnh BC, vẽ đường thẳng song song với AM cắt đường thẳng AB và AC lần lượt tại E và F. Chứng minh rằng DE + DF = 2AM. - Đường thẳng qua A song song với BC cắt EF tại N. Chứng minh rằng N là trung điểm của EF. - Trong một đề thi có 3 bài toán A, B, C. Có 25 học sinh mỗi người đều đã giải được ít nhất một trong 3 bài đó. Hỏi có bao nhiêu thí sinh chỉ giải được bài B? - Cho hai đa thức A = n^6 + 10n^4 + n^3 + 98n - 6n^5 - 26 và B = 1 + n^3 - n. Chứng minh với mọi số nguyên n, thương của phép chia A cho B là bội số của 6. Hy vọng đề giao lưu này sẽ giúp các em học sinh lớp 8 củng cố kiến thức và chuẩn bị tốt cho kỳ thi HSG sắp tới. Chúc các em học tốt!

Nguồn: sytu.vn

Đọc Sách

Đề HSG Toán 8 vòng 2 năm 2023 - 2024 trường THCS Trần Mai Ninh - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chọn đội tuyển học sinh giỏi môn Toán 8 vòng 2 năm học 2023 – 2024 trường THCS Trần Mai Ninh, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 09 tháng 12 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề HSG Toán 8 vòng 2 năm 2023 – 2024 trường THCS Trần Mai Ninh – Thanh Hóa : + Với a, b là các số nguyên. Chứng minh rằng nếu 2 2 4a 3ab 11b chia hết cho 5 thì 4 4 a b chia hết cho 5. Tìm phần dư của phép chia đa thức P x cho (x 1 2). Biết rằng đa thức P x chia cho (x − 1) dư 7 và chia cho (x + 2) dư 1. + Cho hình vuông ABCD. Vẽ tam giác AEB đều nằm trong hình vuông. Đường thẳng AE cắt BD ở F, DE cắt FC ở K. Chứng minh rằng: a) Tam giác DFE cân. b) K là trung điểm của CF. + Cho tam giác IHK cân ở I đường cao IM. Trên tia đối của HM vẽ N sao cho H là trung điểm của MN. Vẽ MP vuông góc với IH. Gọi Q là trung điểm của IP. Chứng minh rằng: NP vuông góc với QM.
Đề HSG Toán 8 vòng 1 năm 2023 - 2024 trường THCS Trần Mai Ninh - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chọn đội tuyển học sinh giỏi môn Toán 8 vòng 1 năm học 2023 – 2024 trường THCS Trần Mai Ninh, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 02 tháng 12 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề HSG Toán 8 vòng 1 năm 2023 – 2024 trường THCS Trần Mai Ninh – Thanh Hóa : + Tìm số tự nhiên n để B = n3 – n2 – 7n + 10 là số nguyên tố. Tìm n nguyên để C = n4 + 2n3 + 2n2 + n +7 là số chính phương. + Cho tam giác ABC vuông tại A, O là trung điểm của BC. Vẽ tia Bx vuông góc với BC (Bx cùng phía với điểm A đối với đường thẳng BC). Qua A vẽ đường thẳng vuông góc với AO cắt Bx ở M. Đường thẳng qua O và song song với AB cắt AM ở D, AC ở F. Đường thẳng MO cắt AB ở E. a) Chứng minh rằng: EF = AO. b) BD cắt CM ở I. Chứng minh rằng: Ba điểm E, I, F thẳng hàng. + Cho tam giác MNP có MN = 5cm, MP = 6cm, NP = 7cm. Gọi I là giao điểm của ba đường phân giác, G là trọng tâm của tam giác MNP. Chứng minh rằng: IG // MP.
Đề HSG cấp huyện Toán 8 năm 2023 - 2024 phòng GDĐT Nam Trực - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chất lượng học sinh giỏi cấp huyện môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Nam Trực, tỉnh Nam Định; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề HSG cấp huyện Toán 8 năm 2023 – 2024 phòng GD&ĐT Nam Trực – Nam Định : + Cho tam giác ABC nhọn (AB AC) có đường cao AH và BK cắt nhau tại D. Gọi M là trung điểm của AB P là điểm đối xứng với H qua M. a) Chứng minh AHBP là hình vuông. b) Chứng minh HP MK 2 và BHD AHC. c) Qua D kẻ đường thẳng vuông góc với AH tại D, qua C kẻ đường thẳng vuông góc với BC tại C, hai đường thẳng này cắt nhau tại Q. Chứng minh P K Q thẳng hàng. + Tìm đa thức dư khi chia đa thức P x cho đa thức 2 x 1 biết đa thức P x chia cho x 1 được dư là 4 và khi chia cho 2 x 1 được dư là 3 5 x. Cho x y là các số thực thỏa mãn x y 1. Tìm giá trị nhỏ nhất của biểu thức 2 2 C x y y x xy 4 4 8. + Lấy 2020 điểm thuộc miền trong của một tứ giác để cùng với 4 đỉnh ta được 2024 điểm, trong đó không có 3 điểm nào thẳng hàng. Biết diện tích của tứ giác ban đầu là 1 2 cm. Chứng minh rằng tồn tại một tam giác có 3 đỉnh lấy từ 2024 điểm đã cho có diện tích không vượt quá 1 2 4042 cm.
Đề khảo sát HSG Toán 8 năm 2023 - 2024 phòng GDĐT Hải Hậu - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chọn học sinh giỏi môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Hải Hậu, tỉnh Nam Định.