Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài giảng căn bậc hai, căn bậc ba Nguyễn Tài Chung

Nội dung Bài giảng căn bậc hai, căn bậc ba Nguyễn Tài Chung Bản PDF - Nội dung bài viết Bài giảng căn bậc hai, căn bậc ba Nguyễn Tài Chung Bài giảng căn bậc hai, căn bậc ba Nguyễn Tài Chung Được biên soạn bởi thầy giáo Nguyễn Tài Chung, tài liệu gồm tổng cộng 37 trang, đặc biệt dành cho học sinh lớp 9.1 để giúp họ hiểu rõ hơn về căn bậc hai và căn bậc ba trong chương trình Toán. Tài liệu bao gồm tóm tắt lý thuyết và bài tập chọn lọc theo chuyên đề, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải bài toán. Phần tóm tắt lý thuyết bao gồm các phần sau: 1. Căn bậc hai và đẳng thức √A2 = |A|. 2. Liên hệ giữa phép nhân và phép khai phương. 3. Liên hệ giữa phép chia và phép khai phương. 4. Bảng căn bậc hai. 5. Biến đổi đơn giản biểu thức chứa căn bậc hai. 6. Rút gọn biểu thức chứa căn bậc hai. 7. Căn bậc ba. Bên cạnh phần tóm tắt lý thuyết, tài liệu còn cung cấp phần bài tập và lời giải chi tiết để học sinh có thể tự kiểm tra và đánh giá kiến thức của mình. Cuối cùng là phần ôn tập chương I, với đề bài và lời giải, giúp học sinh ôn tập lại toàn bộ kiến thức đã học. Với cách biên soạn linh hoạt và chuyên sâu, tài liệu của thầy Nguyễn Tài Chung không chỉ giúp học sinh hiểu rõ hơn về căn bậc hai, căn bậc ba mà còn rèn luyện kỹ năng làm bài toán và ôn tập hiệu quả.

Nguồn: sytu.vn

Đọc Sách

Tài liệu Toán 9 chủ đề tỉ số lượng giác của góc nhọn
Tài liệu gồm 15 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề tỉ số lượng giác của góc nhọn trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Định nghĩa. 2. Tỉ số lượng giác của hai góc phụ nhau. 3. Một số hệ thức liên hệ giữa các tỉ số lượng giác. 4. Bảng tỷ số lượng giác của một số góc đặc biệt. B. Bài tập và các dạng toán. Dạng toán: Tính tỉ số lượng giác của góc nhọn, tính cạnh, tính góc. Cách giải: Sử dụng các kiến thức trong phần tóm tắt lý thuyết. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề biến đổi đơn giản biểu thức chứa căn bậc hai
Tài liệu gồm 22 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề biến đổi đơn giản biểu thức chứa căn bậc hai trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Đưa thừa số ra ngoài dấu căn. 2. Đưa thừa số vào trong dấu căn. 3. Khử mẫu của biểu thức lấy căn. 4. Trục căn thức ở mẫu. B. Bài tập và các dạng toán. Dạng 1: Đưa thừa số ra ngoài dấu căn hoặc vào trong dấu căn. Dạng 2: So sánh các căn bậc hai. Dạng 3: Rút gọn biểu thức chứa căn bậc hai. Dạng 4: Khử mẫu của biểu thức dưới dấu căn bậc hai. Dạng 5: Trục căn thức ở mẫu. Dạng 6: Sử dụng các phép biến đổi căn thức bậc hai để giải phương trình. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề căn bậc ba
Tài liệu gồm 20 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề căn bậc ba trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. I. Căn bậc ba. II. Căn bậc n. B. Bài tập và các dạng toán. Dạng 1: Thực hiện phép tính có chứa căn bậc ba. Dạng 2: Khử mẫu thức chứa căn bậc ba. Dạng 3: So sánh các căn bậc ba. Dạng 4: Giải phương trình chứa căn bậc ba. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề căn bậc hai
Tài liệu gồm 25 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề căn bậc hai trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Khái niệm căn bậc hai. 2. Khái niệm về căn bậc hai số học. 3. So sánh các căn bậc hai số học. B. Bài tập áp dụng và các dạng toán. Dạng 1 : Tìm căn bậc hai và căn bậc hai số học của một số. Cách giải: Ta sử dụng các kiến thức sau: – Nếu a > 0 thì các căn bậc hai của a là ±a. – Căn bậc hai số học của a là a. – Nếu a = 0 thì căn bậc hai của a và căn bậc hai số học của a cùng bằng 0. – Nếu a < 0 thì a không có căn bậc hai và do đó không có căn bậc hai số học. Dạng 2 : Tìm số có căn bậc hai số học là một số cho trước. Cách giải: Với số thực a ≥ 0 cho trước, ta có 2 a chính là số có căn bậc hai số học bằng a. Dạng 3 : Tính giá trị của biểu thức chứa căn bậc hai. Cách giải: Ta sử dụng kiến thức: Với số a ≥ 0 ta có 2 2 a aa a. Dạng 4 : So sánh các căn bậc hai số học. Cách giải: Với: a b ab a b. Dạng 5 : Tìm giá trị của x thỏa mãn điều kiện cho trước. Cách giải: Ta sử dụng chú ý sau: 2 2 xa x a 8. Với số a ≥ 0 ta có: 2 xa xa. Dạng 6 : Chứng minh một số là số vô tỷ. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.