Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề mặt nón - mặt trụ - mặt cầu - Trần Đình Cư

Tài liệu gồm 58 trang với lý thuyết và bài tập trắc nghiệm chủ đề mặt nón, mặt trụ và mặt cầu, các bài tập đều có đáp án và lời giải chi tiết. HÌNH NÓN, MẶT NÓN, KHỐI NÓN 1. Định nghĩa mặt nón Cho đường thẳng Δ. Xét một đường thẳng d cắt Δ tại O và không vuông góc với Δ. Mặt tròn xoay sinh bởi đường thẳng d như thế khi quay quanh Δ gọi là mặt nón tròn xoay (hay đơn giản là mặt nón). 2. Hình nón tròn xoay Cho ΔOIM vuông tại I quay quanh cạnh góc vuông OI thì đường gấp khúc OIM tạo thành một hình, gọi là hình nón tròn xoay (gọi tắt là hình nón). 3. Công thức diện tích và thể tích của hình nón Cho hình nón có chiều cao là h, bán kính đáy r và đường sinh là l thì có: Diện tích xung quanh: Sxq=π.r.l Diện tích đáy (hình tròn): Sd = πr^2 Diện tích toàn phần hình tròn: S = Sd + Sxq Thể tích khối nón: V = 1/3.π.r^2.h 4. Tính chất [ads] MẶT TRỤ – HÌNH TRỤ VÀ KHỐI TRỤ 1. Mặt trụ Mặt trụ là hình tròn xoay sinh bởi đường thẳng l khi xoay quanh đường thẳng song song và cách l một khoảng R. Lúc đó, được gọi là trục, R gọi là bán kính, l gọi là đường sinh. Mặt trụ là tập hợp tất cả những điểm cách đường thẳng cố định một khoảng R không đổi. 2. Hình trụ Hình trụ là hình giới bạn bởi mặt trụ và hai đường tròn bằng nhau, là giao tuyến của mặt trụ và 2 mặt phẳng vuông góc với trục. Hình trụ là hình tròn xoay khi sinh bởi bốn cạnh của hình một hình chữ nhật khi quay xung quanh một đường trung bình của hình chữ nhật đó. 3. Khối trụ Khối trụ là hình trụ cùng với phần bên trong của hình trụ đó. MẶT CẦU – HÌNH CẦU VÀ KHỐI CẦU 1. Định nghĩa và các khái niệm 2. Vị trí tương đối giữa mặt cầu và mặt phẳng 3. Một sô dạng mặt cầu ngoại tiếp thường gặp Dạng 1. Hình chóp có các đỉnh nhìn hai đỉnh còn lại dưới 1 góc vuông Dạng 2. Hình chóp có các cạnh bên bằng nhau Dạng 3. Mặt cầu ngoại tiếp hình chóp có cạnh bên vuông góc với đáy Dạng 4. Mặt cầu ngoại tiếp hình chóp có mặt bên vuông góc với mặt đáy

Nguồn: toanmath.com

Đọc Sách

Chuyên đề Hình học không gian - Lưu Huy Thưởng
Tài liệu gồm 55 trang trình bày lý thuyết, phân dạng, phương pháp giải toán và các bài tập chuyên đề hình học không gian. KIẾN THỨC CƠ BẢN 1. Xác định một mặt phẳng + Ba điểm không thẳng hàng thuộc mặt phẳng. + Một điểm và một đường thẳng không đi qua điểm đó thuộc mặt phẳng. + Hai đường thẳng cắt nhau thuộc mặt phẳng. 2. Một số qui tắc vẽ hình biểu diễn của hình không gian + Hình biểu diễn của đường thẳng là đường thẳng, của đoạn thẳng là đoạn thẳng. + Hình biểu diễn của hai đường thẳng song song là hai đường thẳng song song, của hai đường thẳng cắt nhau là hai đường thẳng cắt nhau. + Hình biểu diễn phải giữ nguyên quan hệ thuộc giữa điểm và đường thẳng. + Đường nhìn thấy vẽ nét liền, đường bị che khuất vẽ nét đứt. CÁC DẠNG TOÁN THƯỜNG GẶP §1. ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN Dạng toán 1. Tìm giao tuyến của hai mặt phẳng. Dạng toán 2. Tìm giao điểm của đường thẳng và mặt phẳng. Dạng toán 3. Chứng minh ba điểm thẳng hàng, ba đường thẳng đồng qui. Dạng toán 4. Xác định thiết diện của một hình chóp với một mặt phẳng (đi qua 3 điểm). [ads] §2. HAI ĐƯỜNG THẲNG SONG SONG Dạng toán 1. Chứng minh hai đường thẳng song song. Dạng toán 2. Tìm giao tuyến của hai mặt phẳng. §3. ĐƯỜNG THẲNG VÀ MẶT PHẲNG SONG SONG Dạng toán 1. Chứng minh đường thẳng song song với mặt phẳng. Dạng toán 2. Tìm giao tuyến của hai mặt phẳng. §4. HAI MẶT PHẲNG SONG SONG Dạng toán 1. Chứng minh hai mặt phẳng song song. Dạng toán 2. Tìm giao tuyến của hai mặt phẳng. §5. HAI ĐƯỜNG THẲNG VUÔNG GÓC §6. ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG Dạng toán 1. Chứng minh đường thẳng vuông góc với mặt phẳng. Chứng minh hai đường thẳng vuông góc. Dạng toán 2. Tìm thiết diện qua một điểm và vuông góc với một đường thẳng. Dạng toán 3. Góc giữa đường thẳng và mặt phẳng. §7. HAI MẶT PHẲNG VUÔNG GÓC Dạng toán 1. Góc giữa hai mặt phẳng. Dạng toán 2. Chứng minh hai mặt phẳng vuông góc. Chứng minh đường thẳng vuông góc với mặt phẳng. Dạng toán 3. Tính diện tích hình chiếu của đa giác. §8. KHOẢNG CÁCH Dạng toán 1. Khoảng cách giữa hai đường thẳng chéo nhau. Dạng toán 2. Tính khoảng cách từ một điểm đến đường thẳng, mặt phẳng. Khoảng cách giữa đường thẳng và mặt phẳng song song. Khoảng cách giữa hai mặt phẳng song song. §9. THỂ TÍCH KHỐI ĐA DIỆN Dạng toán 1. Khối chóp có cạnh bên vuông góc với đáy. Dạng toán 2. Khối chóp có mặt bên vuông góc với đáy. Dạng toán 3. Khối chóp đều. Dạng toán 4. Phương pháp tỷ số thể tích. §10. THỂ TÍCH KHỐI LĂNG TRỤ Dạng toán 1. Khối lăng trụ đứng có chiều cao hay cạnh đáy. Dạng toán 2. Lăng trụ đứng có góc giữa đường thẳng và mặt phẳng. Dạng toán 3. Lăng trụ đứng có góc giữa hai mặt phẳng. Dạng toán 4. Khối lăng trụ xiên. TUYỂN TẬP ĐỀ THI ĐẠI HỌC CÁC NĂM
Chuyên đề trắc nghiệm mặt nón, hình nón và khối nón
Tài liệu gồm 51 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề mặt nón, hình nón và khối nón, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 2. A. LÝ THUYẾT TRỌNG TÂM 1. Định nghĩa mặt nón. 2. Hình nón và khối nón. 3. Khái niệm về diện tích hình nón và thể tích khối nón. 4. Vị trí tương đối của hình nón với một mặt phẳng qua đỉnh của nó. B. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI Dạng 1. Bài toán liên quan đến công thức diện tích, thể tích. Dạng 2. Bài toán về thiết diện qua đỉnh nón. Dạng 3. Hình nón nội – ngoại tiếp khối chóp đều. Dạng 4. Hình nón nội – ngoại tiếp hình trụ, hình cầu. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm mặt trụ, hình trụ và khối trụ
Tài liệu gồm 45 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề mặt trụ, hình trụ và khối trụ, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 2. A. LÝ THUYẾT TRỌNG TÂM I. KHÁI NIỆM VỀ MẶT TRÒN XOAY. 1. Định nghĩa trục của đường tròn. 2. Định nghĩa mặt tròn xoay. II. MẶT TRỤ TRÒN XOAY. 1. Định nghĩa. 2. Tính chất. III. HÌNH TRỤ VÀ KHỐI TRỤ TRÒN XOAY. 1. Định nghĩa hình trụ. 2. Nhận xét. 3. Khối trụ. 4. Diện tích hình trụ và thể tích khối trụ. B. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI + Dạng 1. Bài toán liên quan đến công thức, thể tích. + Dạng 2. Bài toán về thiết diện với hình trụ. + Dạng 3. Hình trụ nội – ngoại tiếp hình lăng trụ đứng. + Dạng 4. Hình trụ nội tiếp hình cầu. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm mặt cầu, hình cầu và khối cầu
Tài liệu gồm 53 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề mặt cầu, hình cầu và khối cầu, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 2. I. LÝ THUYẾT TRỌNG TÂM 1. Mặt cầu. 2. Khối cầu. 3. Mặt cầu ngoại tiếp khối đa diện. 4. Mặt cầu ngoại tiếp khối đa diện. 5. Vị trí tương đối giữa mặt cầu và mặt phẳng. 6. Vị trí tương đối giữa mặt cầu và đường thẳng. 7. Diện tích mặt cầu và thể tích khối cầu. 8. Một số công thức tính nhanh bán kính đường tròn ngoại tiếp. II. CÁC DẠNG TOÁN THƯỜNG GẶP VỀ MẶT CẦU + Dạng 1: Những bài toán vận dụng mức cơ bản. + Dạng 2: Đa diện có các đỉnh cùng nhìn một đoạn nối hai đỉnh còn lại dưới góc vuông. + Dạng 3: Bài toán mặt cầu với chóp có cạnh bên vuông góc đáy. + Dạng 4: Bài toán về mặt cầu với hình chóp có mặt bên vuông góc với đáy. + Dạng 5: Bài toán mặt cầu của hình chóp có các cạnh bên bằng nhau. + Dạng 6: Hình chóp bất kì (bài toán Tổng quát – Nâng cao). + Dạng 7: Bài toán mặt cầu của một số tứ diện đặc biệt. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.