Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp tính khoảng cách giữa hai đường thẳng chéo nhau nhờ kĩ thuật dựng song song giữa đường thẳng và mặt phẳng

Tài liệu gồm 13 trang, được biên soạn bởi tác giả Hoàng Xuân Bính (giáo viên Toán trường THPT chuyên Biên Hòa, Hà Nam), hướng dẫn phương pháp tính khoảng cách giữa hai đường thẳng chéo nhau nhờ kĩ thuật dựng song song giữa đường thẳng và mặt phẳng. Trong bài toán thuộc chủ đề khoảng cách thì ta thấy thường xuất hiện bài toán tính khoảng cách giữa hai đường thẳng chéo nhau. Do đó, mình viết chuyên đề này để giúp các thầy cô và các em học sinh có một hướng tiếp cận khi giải quyết bài toán này. I. Kiến thức cơ bản cần nhớ II. Nội dung chuyên đề Để giúp học sinh và các thầy cô có một cách tiếp cận về loại bài tập này, tôi xin trình bày: Phương pháp tính khoảng cách giữa hai đường thẳng chéo nhau nhờ kĩ thuật dựng song song giữa đường với mặt. a) Phương pháp: Để tính khoảng cách giữa hai đường thẳng chéo nhau trong chuyên đề này, chúng ta sử dụng phương pháp đường song song với mặt: Cho a, b là hai đường thẳng chéo nhau thì ta luôn có: d(a;b) = d(a;(P)) với b ⊂ P và a // (P). b) Các tính chất hình học phẳng thường được sử dụng: – Loại 1: Khai thác tính chất hình bình hành (hoặc trong các hình hình thoi, hình chữ nhật, hình vuông): Trong một hình bình hành thì hai cặp cạnh đối diện luôn song song với nhau. – Loại 2: Khai thác tính chất đường trung bình của tam giác. Chú ý: + Để khai thác tính chất đường trung bình trong tam giác, ta chú ý tới các yếu tố trung điểm có sẵn trong đề bài từ đó xây dựng thêm một trung điểm mới để thiết lập đường trung bình từ đó xác định được yếu tố song song mà ta sẽ chuyển đổi được khoảng cách giữa đường với đường về đường với mặt. + Với bài toán có liên quan tới bài toán về hình hộp hoặc lăng trụ tam giác thì ta chú ý một tính chất quen thuộc của lăng trụ là: tâm của các mặt bên cũng chính là trung điểm của hai đường chéo của mặt bên đó. III. Bài tập minh họa Trong chuyên đề này, tôi xin chia các bài toán áp dụng được phương pháp này thành 2 dạng: + Dạng 1. Các bài toán tính khoảng cách giữa hai đường thẳng chéo nhau trong các bài toán về hình chóp. + Dạng 2: Các bài toán tính khoảng cách giữa hai đường thẳng chéo nhau trong các bài toán về lăng trụ. IV. Bài tập tự luyện

Nguồn: toanmath.com

Đọc Sách

Nắm trọn chuyên đề thể tích khối đa diện ôn thi THPT Quốc gia môn Toán
Tài liệu gồm 464 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, tổng hợp các dạng bài tập thường gặp về chuyên đề thể tích khối đa diện, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 ôn tập hướng đến kỳ thi tốt nghiệp THPT Quốc gia môn Toán năm học 2023 – 2024. Dạng 1: Mở đầu về thể tích khối đa diện. Dạng 2: Thể tích khối chóp có cạnh bên vuông góc với đáy. Dạng 3: Thể tích khối chóp có mặt bên vuông góc với đáy. Dạng 4: Thể tích khối chóp đều. Dạng 5: Tổng hợp về thể tích khối chóp. Dạng 6: Tỷ số thể tích khối chóp. Dạng 7: Thể tích khối lăng trụ đứng. Dạng 8: Thể tích khối đa diện đều. Dạng 9: Thể tích khối lăng trụ xiên. Dạng 10: Tỷ số thể tích khối lăng trụ. Dạng 11: Góc, khoảng cách liên quan đến thể tích khối đa diện. Dạng 12: Cực trị khối đa diện.
Chuyên đề trắc nghiệm tỉ số thể tích
Tài liệu gồm 56 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề tỉ số thể tích, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 1. I. LÝ THUYẾT TRỌNG TÂM 1. Kỹ thuật đổi đỉnh (đáy không đổi). 2. Kỹ thuật chuyển đáy (đường cao không đổi). 3. Tỉ số thể tích của khối chóp. 4. Tỉ số thể tích của khối lăng trụ. II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI + Dạng 1. Tỉ số thể tích của khối chóp. + Dạng 2: Tỉ số thể tích khối lăng trụ. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm thể tích khối lăng trụ
Tài liệu gồm 30 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề thể tích khối lăng trụ, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 1. I. LÝ THUYẾT TRỌNG TÂM II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI + Dạng 1: Thể tích khối lăng trụ đứng. + Dạng 2: Thể tích khối lăng trụ xiên. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm thể tích khối chóp
Tài liệu gồm 48 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề thể tích khối chóp, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 1. I. LÝ THUYẾT TRỌNG TÂM II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI Dạng 1: Thể tích khối chóp có đường cao sẵn có. Dạng 2: Thể tích khối chóp có mặt bên vuông góc với đáy. Dạng 3: Thể tích khối chóp đều. + Khối chóp tam giác đều. + Khối chóp tứ giác đều. Dạng 4: Thể tích một số khối chóp đặc biệt. + Khối chóp có các cạnh bên bằng nhau. + Khối chóp có các cạnh bên tạo với đáy các góc bằng nhau. + Khối chóp có các mặt bên đều tạo với đáy các góc bằng nhau. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.