Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 năm 2023 2024 trường THCS Lê Thị Hồng Gấm Đà Nẵng

Nội dung Đề thi thử Toán vào 10 năm 2023 2024 trường THCS Lê Thị Hồng Gấm Đà Nẵng Bản PDF - Nội dung bài viết Đề thi thử Toán vào 10 năm 2023-2024 Trường THCS Lê Thị Hồng Gấm Đà Nẵng Đề thi thử Toán vào 10 năm 2023-2024 Trường THCS Lê Thị Hồng Gấm Đà Nẵng Sytu hân hạnh giới thiệu đến quý thầy cô và các em học sinh lớp 9 bộ đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023-2024 của trường THCS Lê Thị Hồng Gấm, Đà Nẵng. Đề thi diễn ra vào ngày 13 tháng 05 năm 2023, với những câu hỏi chất lượng, phù hợp với chương trình học của lớp 9. Một số câu hỏi trong đề thi bao gồm: 1. Cho hai hàm số y=x và y=x^2+3. Hãy vẽ đồ thị của hai hàm số này trên cùng một hệ trục tọa độ Oxy. Tìm điểm C thuộc trục Oy sao cho diện tích tam giác ABC bằng 8 cm². 2. Hai đội thủy lợi A và B đào mương. Nếu mỗi đội làm một mình, tổng thời gian hai đội phải làm là 25 ngày, trong đó đội A nhanh hơn đội B. Nếu hai đội cùng làm, công việc hoàn thành trong 6 ngày. Tính thời gian để mỗi đội làm một mình xong công việc. 3. Cho đường tròn (O; R) và dây cung BC không qua O. Chứng minh tứ giác BCEF là tứ giác nội tiếp. Tính BK, AG, BG theo bán kính R của đường tròn. Chứng minh đường tròn ngoại tiếp tam giác HMI đi qua một điểm cố định khi A thay đổi trên cung BC. Đề thi thử Toán vào 10 năm 2023-2024 của trường THCS Lê Thị Hồng Gấm Đà Nẵng không chỉ giúp học sinh ôn tập kiến thức mà còn giúp họ thử sức và chuẩn bị tốt nhất cho kỳ thi sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Hà Tĩnh
Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Hà Tĩnh tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Hà Tĩnh. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Hà Tĩnh, kỳ thi được diễn ra vào ngày …/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Hà Tĩnh : + Một đội xe vận tải được phân công chở 112 tấn hàng. Trước giờ khởi hành có 2 xe phải đi làm nhiệm vụ khác nên mỗi xe còn lại phải chở thêm 1 tấn hàng so với dự tính. Tính số xe ban đầu của đội xe, biết rằng mỗi xe đều chở khối lượng hàng như nhau. [ads] + Cho đường tròn tâm O và điểm M nằm ngoài đường tròn đó. Qua M kẻ các tiếp tuyến MA, MB với đường tròn (A, B là tiếp điểm). Đường thẳng (d) thay đổi đi qua M, không đi qua O và luôn cắt đường tròn tại hai điểm phân biệt C và D (C nằm giữa M và D). a) Chứng minh AMBO là tứ giác nội tiếp. b) Chứng minh MC.MD = MA^2. c) Chứng minh đường tròn ngoại tiếp tam giác OCD luôn đi qua điểm cố định khác O. + Tìm các giá trị của a và b để đường thẳng (d): y = ax + b qua hai điểm M(1;5) và N(2;8).
Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Thái Nguyên
Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Thái Nguyên tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Thái Nguyên. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Thái Nguyên, kỳ thi được diễn ra vào ngày …/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Thái Nguyên : + Cho tam giác ABC (AB < AC) có ba góc nhọn nội tiếp đường tròn (O). Lấy các điểm P, Q lần lượt thuộc các cung nhỏ AC, AB sao cho BP vuông góc với AC, CQ vuông góc với AB. Gọi I, J lần lượt là giao điểm của PQ với AB và AC. Chứng minh IJ.AC = AI.CB. [ads] + Một địa phương cấy 10ha giống lúa loại I và 8ha giống lúa loại II. Sau một mùa vụ, địa phương đó thu hoạch và tính toán sản lượng thấy: Tổng sản lượng của hai giống lúa thu về là 139 tấn. Sản lượng thu về từ 4ha giống lúa loại I nhiều hơn sản lượng thu về từ 3ha giống lúa loại II là 6 tấn. Hãy tính năng suất lúa trung bình ( đơn vị: tấn/ ha) của mỗi loại giống lúa. + Cho hàm số y = ax + b với a ≠ 0. Xác định các hệ số a, b biết đồ thị hàm số song song với đường thẳng y = 2x + 2019 và cắt trục tung tại điểm có tung độ là 2020.
Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Long An
Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Long An tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Long An. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Long An, kỳ thi được diễn ra vào ngày …/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Long An : + Trong mặt phẳng tọa độ Oxy, cho Parabol (P): y = 2x^2 và đường thẳng (d): y = 2x + 4. 1. Vẽ Parabol (P) và đường thẳng (d) trên cùng một mặt phẳng tọa độ Oxy. 2.Tìm tọa độ giao điểm của Parabol (P) và đường thẳng (d) bằng phép tính. 3. Viết phương trình đường thẳng (d’): y = ax + b. Biết rằng (d’) song song với (d) và (d1) và đi qua điểm N(2;3). [ads] + Cho phương trình (ẩn x): x^2 – 6x + m = 0. a) Tìm giá trị m để phương trình có hai nghiệm phân biệt x1, x2. b) Tìm giá trị m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn điều kiện x1^2 – x2^2 = 12. + Cho tam giác ABC vuông tại A có đường cao AH, biết AB = 5cm, BH = 3cm. Tính AH, AC và sinCAH.
Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Lào Cai
Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Lào Cai tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Lào Cai. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Lào Cai, kỳ thi được diễn ra vào ngày …/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Lào Cai : + Cho đường tròn (O), điểm M nằm ngoài đường tròn (O), kẻ hai tiếp tuyến MB, MC (B và C là các tiếp điểm) với đường tròn. Trên cung lớn BC lấy điểm A sao cho AB < AC. Từ điểm M kẻ đường thẳng song song với AB, đường thẳng này cắt đường tròn (O) tại D và E (MD < ME), cắt BC tại F, cắt AC tại I. a) Chứng minh tứ giác MBOC nội tiếp. b) Chứng minh FD.FE = FB.FC, FI > FE = FD.FE. c) Đường thẳng OI cắt đường tròn (O) tại P và Q (P thuộc cung nhỏ AB). Đường thẳng QF cắt đường tròn (O) tại K (K khác Q). Chứng minh 3 điểm P, K, M thẳng hàng. [ads] + Cho đường thẳng (d): y = x – 1 và parabol (P): y = 3x^2. a) Tìm tọa độ A thuộc parabol (P) biết điểm A có hoành độ x = -1. b) Tìm b để đường thẳng (d) và đường thẳng (d’): y = 1/2.x + b cắt nhau tại một điểm trên trục hoành. + Tìm các giá trị của tham số m để phương trình x^2 – 2(m – 1)x + m^2 = 0 có hai nghiệm phân biệt x1, x2 thỏa mãn hệ thức (x1 – x2)^2 + 6m = x1 – 2×2.