Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 môn Toán sở GDĐT Bình Định

Tài liệu gồm 32 trang, được tổng hợp bởi các tác giả: Đào Xuân Luyện, Huỳnh Duy Thủy, Nguyễn Công Nhã, Nguyễn Duy Chiến, Trần Văn Chớ, Cao Hoàng Hạ, Trần Đức An, tuyển tập đề thi tuyển sinh vào lớp 10 môn Toán của sở Giáo dục và Đào tạo tỉnh Bình Định trong vòng 20 năm gần đây, từ năm học 2000 – 2001 đến năm học 2019 – 2020. 1. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2000 – 2001 sở GD&ĐT Bình Định. 2. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2001 – 2002 sở GD&ĐT Bình Định. 3. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2002 – 2003 sở GD&ĐT Bình Định. 4. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2003 – 2004 sở GD&ĐT Bình Định. 5. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2004 – 2005 sở GD&ĐT Bình Định. 6. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2005 – 2006 sở GD&ĐT Bình Định. 7. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2006 – 2007 sở GD&ĐT Bình Định. 8. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2007 – 2008 sở GD&ĐT Bình Định. 9. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2008 – 2009 sở GD&ĐT Bình Định. [ads] 10. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2009 – 2010 sở GD&ĐT Bình Định. 11. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2010 – 2011 sở GD&ĐT Bình Định. 12. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2011 – 2012 sở GD&ĐT Bình Định. 13. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2012 – 2013 sở GD&ĐT Bình Định. 14. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2013 – 2014 sở GD&ĐT Bình Định. 15. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2014 – 2015 sở GD&ĐT Bình Định. 16. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2015 – 2016 sở GD&ĐT Bình Định. 17. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2016 – 2017 sở GD&ĐT Bình Định. 18. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2017 – 2018 sở GD&ĐT Bình Định. 19. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2018 – 2019 sở GD&ĐT Bình Định. 20. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2019 – 2020 sở GD&ĐT Bình Định.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc; kỳ thi được diễn ra vào ngày 11 tháng 06 năm 2023; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Vĩnh Phúc : + Cho tam giác ABC vuông tại A, biết độ dài các cạnh AB = 6cm, AC = 8cm. Bán kính đường tròn ngoại tiếp tam giác ABC bằng? + Một hãng taxi công nghệ cao có giá cước (giá tiền khách hàng phải trả cho mỗi km) được tính theo các mức như sau: Mức 1: Giá mở cửa cho 1 km đầu tiên là 20000 đồng. Mức 2: Từ trên 1 km đến 25 km. Mức 3: Từ trên 25 km. Biết rằng anh A đi 32 km phải trả tiền taxi là 479500 đồng còn chị B đi 41 km phải trả 592000 đồng. Hỏi giá cước của hãng taxi trên ở mức 2 và mức 3 là bao nhiêu? Nếu khách hàng đi 24 km thì phải trả taxi bao nhiêu tiền? + Cho đường tròn (O) và BC là một dây cung khác đường kính của (O), A là điểm di động trên cung lớn BC sao cho AC > AB (A khác B). Gọi D là chân đường phân giác trong góc BAC (D thuộc BC). Đường thẳng đi qua O và vuông góc với BC cắt đường thẳng AD tại E. Kẻ EH, EK lần lượt vuông góc với AB và AC (H thuộc AB, K thuộc AC). a) Chứng minh EHAK là tứ giác nội tiếp. b) Gọi F là tâm đường tròn nội tiếp tam giác ABC. Chứng minh điểm E thuộc đường tròn (O) và E là tâm đường tròn ngoại tiếp tam giác BCF. c) Gọi M, N, I lần lượt là trung điểm của các đoạn thẳng AE, BE và BC. Chứng minh BMDN là tứ giác nội tiếp. Xác định vị trí điểm A để bốn điểm H, N, I, K thẳng hàng.
Đề tuyển sinh lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo thành phố Hà Nội; kỳ thi được diễn ra vào Chủ Nhật ngày 11 tháng 06 năm 2023; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề tuyển sinh lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Theo kế hoạch, một phân xưởng phải làm xong 900 sản phẩm trong một số ngày quy định. Thực tế, mỗi ngày phân xưởng đã làm được nhiều hơn 15 sản phẩm so với số sản phẩm phải làm một ngày theo kế hoạch. Vì thế 3 ngày trước khi hết thời hạn, phân xưởng đã làm xong 900 sản phẩm. Hỏi, theo kế hoạch, mỗi ngày phân xưởng phải làm bao nhiêu sản phẩm? (Giả định rẳng số sản phẩm mà phân xưởng làm được trong mỗi ngày là bằng nhau). + Một khối gỗ dạng hình trụ có bán kính đáy là 30cm và chiều cao là 120cm. Tính thể tích khối gỗ đó (lấy π ≈ 3,14). + Cho tam giác ABC có ba góc nhọn (AB < AC), nội tiếp đường tròn (O). Tiếp tuyến tại điểm A của đường tròn (O) cắt đường thẳng BC tại điểm S. Gọi I là chân đường vuông góc kẻ từ điểm O đến đường thẳng BC. 1. Chứng minh tứ giác SAOI nội tiếp. 2. Gọi H, D lần lượt là chân các đường vuông góc kẻ từ điểm A đến các đường thẳng SO, BC. Chứng minh OAH = IAD. 3. Vẽ đường cao CE của tam giác ABC. Gọi Q là trung điểm của đoạn thẳng BE. Đường thẳng QD cắt đường thẳng AH tại điểm K. Chứng minh BQ.BA = BD.BI và đường thẳng CK song song với đường thẳng SO.
Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Thanh Hóa. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Thanh Hóa : + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d) có phương trình y = ax + b. Tìm a và b để đường thẳng (d) có hệ số góc bằng 3 và đi qua điểm M(-1;2). + Cho phương trình x2 − 2mx – m2 − 2 = 0 (m là tham số). Tìm các giá trị của m để phương trình có hai nghiệm x1, x2 (với x1 < x2) thỏa mãn hệ thức x2 − 2|x1| – 3x1x2 = 3m2 + 3m + 4. + Cho đường tròn (O) và một điểm M nằm ngoài đường tròn. Từ điểm M kẻ hai tiếp tuyến MA, MB đến (O) (với A và B là các tiếp điểm). Gọi C là điểm đối xứng với B qua O, đường thẳng MC cắt đường tròn (O) tại D (D khác C). 1. Chứng minh MAOB là tứ giác nội tiếp. 2. Gọi N là giao điểm của hai đường thẳng AD và MO. Chứng minh MN2 = ND.NA. 3. Gọi H là giao điểm của MO và AB. Chứng minh (HA/HD)^2 – AC/HN = 1.
Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Đắk Lắk
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Đắk Lắk. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Đắk Lắk : + Một khu vườn hình chữ nhật có chiều rộng ngắn hơn chiều dài 45m. Tính diện tích của khu vườn, biết rằng nếu chiều dài giảm 2 lần và chiều rộng tăng 3 lần thì chu vi khu vườn không thay đổi. + Cho nửa đường tròn tâm O đường kính AB. Gọi M là điểm chính giữa cung AB, E là điểm trên cung AM (E khác A và M). Lấy điểm F trên đoạn BE sao cho BF = AE. Gọi K là giao điểm của MO và BE. a) Chứng minh rằng EAOK là tứ giác nội tiếp. b) Chứng minh rằng AEMF vuông cân. c) Hai đường thẳng AE và OM cắt nhau tại D. Chứng minh rằng MK.ED = MD.EK. + Bút chì có dạng hình trụ, có đường kính đáy 8mm và chiều cao bằng 180mm. Thân bút chì được làm bằng gỗ, phần lõi được làm bằng than chì. Phần lõi có dạng hình trụ có chiều cao bằng chiều dài bút và đáy là hình tròn có đường kính 2mm. Tính thể tích phần gỗ của 2024 chiếc bút chì (lấy pi = 3,14).