Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Mở đầu hình học giải tích không gian Oxyz

Ebook Mở đầu hình học giải tích không gian Oxyz gồm 411 trang, được biên soạn bởi thầy giáo Huỳnh Kim Linh và nhóm tác giả Chinh phục Olympic Toán, mang tới cho bạn đọc cái nhìn khái quát và cơ bản nhất về chủ đề hình học Giải tích không gian Oxyz, thông qua các lý thuyết cơ bản và ví dụ minh họa kèm lời giải chi tiết. Tài liệu giúp các em học sinh lớp 12 học tốt chương trình Hình học 12 chương 3: phương pháp tọa độ trong không gian và ôn thi tốt nghiệp THPT môn Toán. Chương 1 . Mở đầu hình học tọa độ không gian. + Dạng 1. Tìm tọa độ của vectơ, của điểm. + Dạng 2. Tích vô hướng của hai vectơ và ứng dụng. + Dạng 3. Vận dụng công thức trung điểm và trọng tâm. + Dạng 4. Chứng minh hai vectơ cùng phương, không cùng phương. + Dạng 5. Tích có hướng của hai vectơ và ứng dụng. Chương 2 . Lý thuyết về phương trình đường thẳng. + Dạng 1. Viết phương trình đường thẳng đi qua hai điểm phân biệt. + Dạng 2. Đường thẳng Δ đi qua điểm M và song song với đường thẳng d. + Dạng 3. Viết phương trình đường thẳng Δ đi qua điểm M và vuông góc với mặt phẳng (α). + Dạng 4. Viết phương trình đường thẳng Δ đi qua điểm M và vuông góc với hai đường thẳng d1, d2 không cùng phương. + Dạng 5. Viết phương trình đường thẳng Δ  đi qua điểm M vuông góc với đường thẳng d và song song với mặt phẳng (α). + Dạng 6. Viết phương trình đường thẳng Δ đi qua điểm A và song song với hai mặt phẳng cắt nhau (α), (β). + Dạng 7. Viết phương trình đường thẳng Δ là giao tuyến của hai mặt phẳng (α) và (β). + Dạng 8. Viết phương trình đường thẳng Δ đi qua điểm A và cắt hai đường thẳng d1, d2 không chứa A. + Dạng 9. Viết phương trình đường thẳng Δ nằm trong mặt phẳng (α) và cắt hai đường thẳng d1, d2. + Dạng 10. Viết phương trình đường thẳng Δ đi qua điểm A, vuông góc và cắt d. + Dạng 11. Viết phương trình đường thẳng Δ đi qua điểm A, vuông góc với d1 và cắt d2, với A không thuộc d2. + Dạng 12. Viết phương trình đường thẳng Δ đi qua điểm A, cắt đường thẳng d và song song với mặt phẳng (α). + Dạng 13. Viết phương trình đường thẳng Δ nằm trong mặt phẳng (α) cắt và vuông góc đường thẳng d. + Dạng 14. Viết phương trình đường thẳng Δ đi qua giao điểm A của đường thẳng d và mặt phẳng (α), nằm trong (α) và vuông góc đường thẳng d (d không vuông góc với (α)). + Dạng 15. Viết phương trình đường thẳng Δ là đường vuông góc chung của hai đường thẳng chéo nhau d1, d2. + Dạng 16. Viết phương trình đường thẳng Δ song song với đường thẳng d và cắt cả hai đường thẳng d1, d2. + Dạng 17. Viết phương trình đường thẳng Δ vuông góc với mặt phẳng (α) và cắt cả hai đường thẳng d1, d2. + Dạng 18. Viết phương trình Δ là hình chiếu vuông góc của d lên mặt phẳng (α). + Dạng 19. Viết phương trình Δ là hình chiếu song song của d lên mặt phẳng (α) theo phương d’. [ads] Chương 3 . Các bài toán về phương trình mặt phẳng. + Dạng 1. Viết phương trình mặt phẳng khi biết một điểm và vectơ pháp tuyến của nó. + Dạng 2. Viết phương trình mặt phẳng đi qua một điểm và song song với một mặt phẳng. + Dạng 3. Viết phương trình mặt phẳng đi qua ba điểm không thẳng hàng. + Dạng 4. Viết phương trình mặt phẳng (α) đi qua điểm M và vuông góc với đường thẳng d. + Dạng 5. Viết phương trình mặt phẳng (α) chứa đường thẳng Δ, vuông góc với mặt phẳng (β). + Dạng 6. Viết phương trình mặt phẳng (α) qua hai điểm A, B và vuông góc với mặt phẳng (β). + Dạng 7. Viết phương trình mặt phẳng (α) chứa đường thẳng Δ và song song với Δ’ (Δ và Δ’ chéo nhau). + Dạng 8. Viết phương trình mặt phẳng (α) chứa đường thẳng Δ và điểm M. + Dạng 9. Viết phương trình mặt phẳng chứa hai đường thẳng cắt nhau. + Dạng 10. Viết phương trình mặt phẳng chứa hai đường thẳng song song. + Dạng 11. Viết phương trình mặt phẳng đi qua một điểm và song song với hai đường thẳng chéo nhau. + Dạng 12. Viết phương trình mặt phẳng đi qua một điểm và vuông góc với hai mặt phẳng cho trước. + Dạng 13. Viết phương trình mặt phẳng (α) song song với mặt phẳng (β) và cách (β) một khoảng k. + Dạng 14. Viết phương trình mặt phẳng (α) song song với mặt phẳng (β) và cách điểm M một khoảng k. + Dạng 15. Viết phương trình mặt phẳng tiếp xúc với mặt cầu. Chương 4 . Các bài toán về phương trình mặt cầu. + Dạng 1. Tìm tâm và bán kính mặt cầu. + Dạng 2. Viết phương trình mặt cầu. + Dạng 3. Sự tương giao và tiếp xúc. Chương 5 . Các bài toán cực trị trong hình học không gian Oxyz. + Dạng 1. Cho hai điểm A, B, mặt phẳng (P) và đường thẳng d. Tìm tọa độ điểm M thuộc (P) sao cho chu vi tam giác MAB nhỏ nhất. Tìm tọa độ điểm M thuộc d sao cho chu vi tam giác MAB nhỏ nhất. + Dạng 2. Cho hai điểm A, B và đường thẳng (d). Tìm trên (d) điểm M để: MA^2 + MB^2 đạt giá trị nhỏ nhất; |MA + MB| đạt giá trị nhỏ nhất; tam giác MAB có diện tích nhỏ nhất. + Dạng 3. Cho điểm A và đường thẳng (d). Viết phương trình mặt phẳng (Q) chứa (d) có d(A;(Q)) lớn nhất, nhỏ nhất. + Dạng 4. Cho hai đường thẳng d và d’. Viết phương trình mặt phẳng (P) chứa d và tạo với đường thẳng d’ một góc lớn nhất. + Dạng 5. Cho hai điểm A, B và đường thẳng d. Viết phương trình đường thẳng Δ đi qua A, cắt d và cách điểm B một khoảng lớn nhất. + Dạng 6. Cho hai điểm A, B và đường thẳng d. Viết phương trình đường thẳng Δ đi qua A, cắt d và cách điểm B một khoảng nhỏ nhất. + Dạng 7. Tìm M sao cho P = a1MA1^2 + . . . + anMAn^2 nhỏ nhất / lớn nhất. + Dạng 8. Cho mặt cầu (S) và mặt phẳng (α). Tìm điểm M trên mặt cầu sao cho khoảng cách từ nó đến mặt cầu đạt giá trị lớn nhất hoặc giá trị nhỏ nhất. + Dạng 9. Cho mặt cầu (S) và đường thẳng (d). Tìm điểm M trên mặt cầu (S) sao cho khoảng cách từ nó đến đường thẳng d đạt giá trị lớn nhất hoặc đạt giá trị nhỏ nhất? Chương 6 . Phương pháp tọa độ hóa hình cổ điển.

Nguồn: toanmath.com

Đọc Sách

Phương pháp trắc nghiệm hình học giải tích mặt phẳng và không gian - Mộng Hy, Thế Cấp
Cuốn sách gồm 247 trang gồm lý thuyết, phương pháp giải toán và các bài tập trắc nghiệm có lời giải chi tiết chủ đề hình học giải tích. Cuốn sách gồm 10 chuyên đề được chia làm 2 phần: phần 1 là phần hình học giải tích trong mặt phẳng do TS. Đậu Thế Cấp biên soạn, phần 2 là phần hình học giải tích trong không gian do PGS.TS Nguyễn Mộng Hy biên soạn. Cuối cùng có phần trắc nghiệm giúp người đọc hoàn thiện hơn kiến thức của mình. Phần 1. Hình học giải tích trong mặt phẳng Chuyên đề 1. Vectơ và tọa độ trong mặt phẳng Chuyên đề 2. Đường thẳng trong mặt phẳng Chuyên đề 3. Đường tròn Chuyên đề 4. Elip Chuyên đề 5. Hypebol Chuyên đề 6. Parabol [ads] Phần 2. Hình học giải tích trong không gian Chuyên đề 7. Vectơ tọa độ trong không gian Chuyên đề 8. Mặt phẳng Chuyên đề 9. Đường thẳng trong không gian Chuyên đề 10. Mặt cầu
Phương pháp tọa độ hóa bài toán hình không gian - Trần Duy Thúc
Tài liệu gồm 24 trang giới thiệu phương pháp tọa độ hóa bài toán hình không gian và các ví dụ minh họa có lời giải chi tiết. Ưu điểm của phương pháp: Khi ta chọn được tọa độ các điểm thì chỉ cần áp dụng các kiến thức hình giải tích như khoảng cách, góc, chứng minh vuông góc. Tuy nhiên, với một số em học sinh thì việc tính được tọa độ là vấn đề? Về nguyên tắc thì em có thể chọn gốc tọa độ nằm bất cứ chổ nào, nhưng chọn chổ nào thì việc tính tọa độ là thuận lợi nhất? Sai lầm của không ít người dẫn đến việc tính tọa độ các điểm phức tạp là cứ thấy chân đường cao của hình chóp là chọn làm gốc tọa độ. Trong một số trường hợp em chọn như vậy sẽ dẫn đến việc tính tọa độ khó khăn và dễ bị chán nản. Để thuận lợi cho việc tính tọa độ em nhớ nguyên tắc sau đây: [ads] + Vẽ hình thực của đa giác đáy ra bên cạnh. + Ưu tiên chọn gốc tọa độ là góc vuông của đa giác đáy chứ không phải là ưu tiên chân đường cao. Tất nhiên nếu chân đường cao mà trùng gốc vuông ở đáy thì ta chọn gốc tọa ngay điểm đó luôn là tốt. + Nhìn vào hình thực này để tính tọa độ các điểm trong mặt phẳng đáy trước. Sau đó tính các điểm phát sinh và đỉnh. + Cứ quan tâm vào việc chọn trục Ox Oy ở đáy, sau đó gắn trục Oz vào là xong.
Gắn hệ tọa độ Oxyz để giải các bài toán hình học không gian - Phương Nguyễn
Tài liệu gồm 34 trang hướng dẫn giải bài toán hình học không gian bằng cách gắn hệ trục tọa độ Oxy. Tài liệu do tác giả Nguyễn Phương biên soạn. Như các bạn đều biết , môn Toán là một môn rất quan trọng và có tầm ảnh hưởng rất lớn tới việc xét tuyển vào Đại Học hay Cao Đẳng sau này. Do đó để có được số điểm cao trong môn này, ta cần phải có 1 vốn kiến thức cần thiết và hiểu rõ những khái niệm , bản chất toán học. Và trong chuyên đề ngày hôm nay mình sẽ đề cập đến 1 trong 3 câu hình học luôn xuất hiện trong đề thi đại học. Đó chính là các bài toán về hình học không gian thuần túy (cổ điển) với phương pháp gắn hệ trục Oxyz và giải như một bài toán giải tích bình thường. Đa số trong các bài toán này, mình thường thấy các bạn chỉ làm được 1/2 yêu cầu đề bài (giống mình lúc trước hihi :D). Các câu hỏi còn lại như tìm khoảng cách giữa 1 điểm đến đường thẳng hay tìm khoảng cách giữa 2 đường thẳng hoặc chứng minh song song, vuông góc v.v….. các bạn đều bỏ (và mình cũng vậy :D). Lý do là bởi vì bạn đã quên 1 số kiến thức về hình học ở lớp 11 và các cách tư duy dựng hình. Vì thế mình sẽ giúp các bạn vượt qua các bài toán ấy bằng phương pháp tọa độ hóa này. [ads] Ưu điểm: + Dễ hiểu + Dễ làm + Công việc chính là chỉ tính toán + Không cần chứng minh nhiều + Phù hợp với các bạn học hình yếu Nhược điểm: + Tính toán dễ sai + Đôi khi sẽ chậm hơn so với cách cổ điển + Ít được sử dụng + Đôi khi nhìn rất dễ nhầm lẫn
Ứng dụng phương pháp tọa độ để giải bài toán hình học không gian - Cao Văn Tuấn
Các em học sinh nên nhớ rằng “Không có phương pháp giải nào là vạn năng”, do đó các em phải không ngừng luyện tập để tạo ra sợi dây liên kết giữa các phần kiến thức của mình, khi đó các em mới có thể vận dụng linh hoạt các phương pháp sao cho bài giải của mình khoa học nhất, hay nhất. Đối với một số loại hình chóp, hình lăng trụ trong một số bài toán ta có thể sử dụng việc đặt một hệ trục tọa độ thích hợp, để chuyển từ việc giải hình học không gian tổng hợp thuần túy (mà việc này có thể gặp nhiều khó khăn trong dựng hình, tính toán với các em học sinh) sang việc tính toán dựa vào tọa độ. Cách giải bài toán như vậy gọi là phương pháp tọa độ hóa. Đối với phương pháp tọa độ hóa, việc tính toán có thể sẽ dài dòng và phức tạp hơn phương pháp hình học không gian thuần túy, tuy nhiên cách giải này thực sự rất hữu ích cho nhiều bạn học sinh mà việc nắm vững những phương pháp trong cách giải hình học không gian còn yếu hoặc những bài toán hình không gian về khoảng cách khó; về xác định GTLN, GTNN; các bài toán về quỹ tích điểm … Để có thể làn tốt được các bài toán giải bằng phương pháp tọa độ hóa thì các em học sinh phải nắm chắc các kiến thức (cụ thể là các công thức tính) của phần “Phương pháp tọa độ trong không gian” và những kiến thức cơ bản nhất của hình học không gian. [ads] Sau đây thầy sẽ trình bày cụ thể phương pháp Ứng dụng phương pháp tọa độ để giải toán hình học không gian: + Bước 1: Chọn hệ trục tọa độ Oxyz trong không gian: Vì Ox, Oy, Oz vuông góc với nhau từng đôi một nên nếu hình vẽ bài toán cho có chứa các cạnh vuông góc thì ta ưu tiên chọn các cạnh đó làm trục tọa độ. + Bước 2: Suy ra tọa độ của các đỉnh, điểm trên hệ trục tọa độ vừa ghép. + Bước 3: Sử dụng các kiến thức về tọa độ không gian để giải quyết bài toán. Đối với các công thức tính về vector, ta có thể sử dụng máy tính Casio để tăng tốc độ tính toán. Các em lưu ý rằng chúng ta có thể tọa độ hóa một khối đa diện bất kỳ. Chỉ cần chúng ta xác định được đường cao của khối đa diện đó và thông thường trên lý thuyết ta đều đặt gốc tọa độ là chân đường cao của khối đa diện; trục cao (trục Oz) là đường cao, sau đó ta dựng hai tia còn lại. Nhưng trong thực hành giải toán chúng ta căn cứ tùy bài toán để đặt hệ trục miễn sao chúng ta có thể tìm các tọa độ các đỉnh liên quan đến hình khối cần tính có thể tìm được một cách dễ dàng hoặc không quá phức tạp.