Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Hướng dẫn giải bài tập sách giáo khoa Toán 9 Cánh Diều

Tài liệu gồm 313 trang, hướng dẫn giải bài tập sách giáo khoa Toán 9 Cánh Diều (tập 1 và tập 2). MỤC LỤC : Chương 1 . PHƯƠNG TRÌNH VÀ HỆ PHƯƠNG TRÌNH BẬC NHẤT 1. §1 – PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN 1. A Phương trình tích có dạng (ax + b)(cx + d) = 0 (a khác 0; c khác 0) 1. B Phương trình chứa ẩn ở mẫu 3. C Bài tập 5. §2 – PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN. HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN 10. A Phương trình bậc nhất hai ẩn 10. B Hệ hai phương trình bậc nhất hai ẩn 13. C Bài tập 15. §3 – GIẢI HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN 20. A Giải hệ phương trình bằng phương pháp thế 20. B Giải hệ phương trình bằng phương pháp cộng đại số 22. C Sử dụng máy tính cầm tay để tìm nghiệm của hệ phương trình bậc nhất hai ẩn 25. D Bài tập 26. §4 – BÀI TẬP CUỐI CHƯƠNG I 31. Chương 2 . BẤT ĐẲNG THỨC. BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN 39. §1 – BẤT ĐẲNG THỨC 39. A Nhắc lại về thứ tự trong tập hợp số thực 39. B Bất đẳng thức 40. C Bài tập 44. §2 – BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN 47. A Mở đầu về bất phương trình một ẩn 47. B Bất phương trình bậc nhất một ẩn 48. C Cách giải 48. D Bài tập 52. §3 – BÀI TẬP CUỐI CHƯƠNG II 56. Chương 3 . CĂN THỨC 62. §1 – CĂN BẬC HAI VÀ CĂN BẬC BA CỦA SỐ THỰC 62. A Căn bậc hai của số thực không âm 62. B Căn bậc ba 64. C Sử dụng máy tính cầm tay để tìm căn bậc hai, căn bậc ba của một số hữu tỉ 65. D Bài tập 67. §2 – CĂN THỨC 70. A Một số phép tính về căn bậc hai 70. B Bài tập 74. §3 – CĂN THỨC BẬC HAI VÀ CĂN THỨC BẬC BA CỦA BIỂU THỨC ĐẠI SỐ 78. A Căn thức bậc hai 78. B Căn thức bậc ba 80. C Bài tập 83. §4 – MỘT SỐ PHÉP BIẾN ĐỔI CĂN THỨC BẬC HAI CỦA BIỂU THỨC ĐẠI SỐ 86. A Căn thức bậc hai của một bình phương 86. B Căn thức bậc hai của một tích 86. C Căn thức bậc hai của một thương 87. D Trục căn thức ở mẫu 88. E Bài tập 90. §5 – BÀI TẬP CUỐI CHƯƠNG III 93. Chương 4 . HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG 98. §1 – TỈ SỐ LƯỢNG GIÁC CỦA GÓC NHỌN 98. A Tỉ số lượng giác của góc nhọn 98. B Tỉ số lượng giác của hai góc phụ nhau 100. C Sử dụng máy tính cầm tay để tìm giá trị lượng giác của một góc nhọn 103. D Bài tập 104. §2 – MỘT SỐ HỆ THỨC LƯỢNG VỀ CẠNH VÀ GÓC TRONG TAM GIÁC VUÔNG 108. A Tính cạnh góc vuông theo cạnh huyền và tỉ số lượng giác của góc nhọn 108. B Tính cạnh góc vuông theo cạnh góc vuông còn lại và tỉ số lượng giác của góc nhọn 110. C Áp dụng tỉ số lượng giác của góc nhọn để giải tam giác vuông 110. D Bài tập 113. §3 – ỨNG DỤNG CỦA TỈ SỐ LƯỢNG GIÁC CỦA GÓC NHỌN 117. A Ước lượng khoảng cách 117. B Bài tập 120. §4 – BÀI TẬP CUỐI CHƯƠNG IV 123. Chương 5 . ĐƯỜNG TRÒN 126. §1 – ĐƯỜNG TRÒN. VỊ TRÍ TƯƠNG ĐỐI CỦA HAI ĐƯỜNG TRÒN 126. A Khái niệm đường tròn 126. B Liên hệ giữa đường kính và dây của đường tròn 127. C Tính đối xứng của đường tròn 128. D Vị trí tương đối của hai đường tròn 130. E Bài tập 130. §2 – VỊ TRÍ TƯƠNG ĐỐI GIỮA ĐƯỜNG THẲNG VÀ ĐƯỜNG TRÒN 134. A Đường thẳng và đường tròn cắt nhau 134. B Đường thẳng và đường tròn tiếp xúc nhau 134. C Đường thẳng và đường tròn không giao nhau 135. D Bài tập 136. §3 – TIẾP TUYẾN CỦA ĐƯỜNG TRÒN 139. A Nhận biết tiếp tuyến của đường tròn 139. B Tính chất của hai tiếp tuyến cắt nhau 142. C Bài tập 144. §4 – GÓC Ở TÂM – GÓC NỘI TIẾP 148. A Góc ở tâm 148. B Cung. Số đo cung 149. C Góc nội tiếp 153. D Bài Tập 155. §5 – ĐỘ DÀI CUNG TRÒN, DIỆN TÍCH HÌNH QUẠT TRÒN, DIỆN TÍCH HÌNH VÀNH KHUYÊN 159. A Độ dài cung tròn 159. B Diện tích hình quạt tròn 160. C Diện tích hình vành khuyên 163. D Bài tập 164. §6 – BÀI TẬP CUỐI CHƯƠNG V 167. Chương 6 . MỘT SỐ YẾU TỐ THỐNG KÊ VÀ XÁC SUẤT 172. §1 – MÔ TẢ VÀ BIỂU DIỄN DỮ LIỆU TRÊN CÁC BẢNG, BIỂU ĐỒ 172. A Biểu diễn dữ liệu trên bảng thống kê, biểu đồ tranh 172. B Biểu diễn dữ liệu trên biểu đồ cột, biểu đồ cột ghép 173. C Biểu diễn dữ liệu trên biểu đồ đoạn thẳng 175. D Biểu diễn dữ liệu trên biểu đồ hình quạt tròn 177. E Bài tập 180. §2 – TẦN SỐ. TẦN SỐ TƯƠNG ĐỐI 186. A Tần số. Bảng tần số. Biểu đồ tần số 186. B Tần số tương đối. Bảng tần số tương đối. Biểu đồ tần số tương đối 189. C Bài tập 192. §3 – TẦN SỐ GHÉP NHÓM. TẦN SỐ TƯƠNG ĐỐI GHÉP NHÓM 196. A Mẫu số liệu ghép nhóm 196. B Tần số ghép nhóm. Bảng tần số ghép nhóm 197. C Tần số tương đối ghép nhóm. Bảng tần số tương đối ghép nhóm. Biểu đồ tần số tương đối ghép nhóm 199. D Bài tập 202. §4 – PHÉP THỬ NGẪU NHIÊN VÀ KHÔNG GIAN MẪU. XÁC SUẤT CỦA BIẾN CỐ 207. A Phép thử ngẫu nhiên và không gian mẫu 207. B Xác suất của biến cố 208. C Bài tập 211. §5 – ÔN TẬP CHƯƠNG VI 215. Chương 7 . HÀM SỐ Y = AX2 (A KHÁC 0) 220. §1 – HÀM SỐ Y = AX2 (A KHÁC 0) 220. A Hàm số y = ax2 (a khác 0) 220. B Đồ thị hàm số y = ax2 (a khác 0) 221. C Bài tập 224. §2 – PHƯƠNG TRÌNH BẬC HAI MỘT ẨN 228. A Định nghĩa 228. B Giải phương trình 228. C Ứng dụng của phương trình bậc hai một ẩn 232. D Sử dụng máy tính cầm tay để tìm nghiệm của phương trình bậc hai một ẩn 235. E Bài tập 235. §3 – ĐỊNH LÍ VI-ÉT 240. A Định lí Vi-ét 240. B Tìm hai số khi biết tổng và tích 242. C Bài tập 243. §4 – BÀI TẬP CUỐI CHƯƠNG VII 247. Chương 8 . ĐƯỜNG TRÒN NGOẠI TIẾP VÀ ĐƯỜNG TRÒN NỘI TIẾP 253. §1 – ĐƯỜNG TRÒN NGOẠI TIẾP TAM GIÁC. ĐƯỜNG TRÒN NỘI TIẾP TAM GIÁC 253. A Đường tròn ngoại tiếp tam giác 253. B Đường tròn nội tiếp tam giác 256. C Bài tập 258. §2 – TỨ GIÁC NỘI TIẾP ĐƯỜNG TRÒN 263. A Định nghĩa 263. B Tính chất 264. C Hình chữ nhật, hình vuông nội tiếp đường tròn 264. D Bài tập 265. §3 – BÀI TẬP CUỐI CHƯƠNG VIII 270. Chương 9 . ĐA GIÁC ĐỀU 272. §1 – ĐA GIÁC ĐỀU. HÌNH ĐA GIÁC ĐỀU TRONG THỰC TIỄN 272. A Đa giác. Đa giác lồi 272. B Đa giác đều 274. C Hình đa giác đều trong thực tiễn 275. D Bài tập 276. §2 – PHÉP QUAY 278. A Khái niệm 278. B Phép quay giữ nguyên hình đa giác đều 279. C Bài tập 280. §3 – BÀI TẬP CUỐI CHƯƠNG IX 283. Chương 10 . HÌNH HỌC TRỰC QUAN 287. §1 – HÌNH TRỤ 287. A Hình trụ 287. B Diện tích xung quanh của hình trụ 289. C Thể tích của hình trụ 290. D Bài tập 290. §2 – HÌNH NÓN 294. A Hình nón 294. B Diện tích xung quanh của hình nón 294. C Thể tích của hình nón 295. D Bài tập 296. §3 – HÌNH CẦU 299. A Hình cầu 299. B Diện tích mặt cầu 300. C Thể tích của khối cầu 301. D Bài tập 301. §4 – BÀI TẬP CUỐI CHƯƠNG X 303.

Nguồn: toanmath.com

Đọc Sách

Tài liệu Toán 9 chủ đề tính chất hai tiếp tuyến cắt nhau
Tài liệu gồm 27 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề tính chất hai tiếp tuyến cắt nhau trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Tính chất của hai tiếp tuyến cắt nhau. Định lí: Nếu hai tiếp tuyến của một đường tròn cắt nhau tại một điểm thì: – Điểm đó cách đều hai tiếp điểm. – Tia kẻ từ điểm đó đi qua tâm là tia phân giác của góc tạo bởi hai tiếp tuyến. – Tia kẻ từ tâm đi qua điểm đó là tia phân giác của góc tạo bởi hai bán kính đi qua các tiếp điểm. – Đường thẳng đi qua điểm đó và qua tâm đường tròn là đường trung trực của đoạn thẳng nối hai tiếp điểm. 2. Đường tròn nội tiếp tam giác. – Đường tròn tiếp xúc với ba cạnh của một tam giác gọi là đường tròn nội tiếp tam giác, còn tam giác gọi là ngoại tiếp đường tròn. – Tâm của đường tròn nội tiếp tam giác là giao điểm của các đường phân giác của các góc trong tam giác. 3. Đường tròn bàng tiếp tam giác. – Đường tròn tiếp xúc với 1 cạnh của tam giác và tiếp xúc với phần kéo dài của hai cạnh còn lại gọi là đường tròn bàng tiếp tam giác. – Tâm của đường tròn bàng tiếp tam giác góc A là giao điểm của hai đường phân giác các góc ngoài tại B và C hoặc là giao điểm của đường phân giác góc A và đường phân giác ngoài tại B (hoặc C). – Mỗi tam giác có ba đường tròn bàng tiếp tam giác. B. Bài tập và các dạng toán. Dạng 1 : Chứng minh hai đoạn thẳng bằng nhau, hai đường thẳng song song, hai đường thẳng vuông góc. Cách giải: Dùng tính chất của hai tiếp tuyến cắt nhau. Dạng 2 : Chứng minh tiếp tuyến, tính độ dài, tính số đo góc. Cách giải: Ta sử dụng các kiến thức sau: – Tính chất của hai tiếp tuyến cắt nhau. – Khái niệm đường tròn nội tiếp, bàng tiếp. – Hệ thức lượng về cạnh và góc trong tam giác vuông. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề vị trí tương đối của hai đường tròn
Tài liệu gồm 27 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề vị trí tương đối của hai đường tròn trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Tính chất của đường nối tâm. – Đường nối tâm (Đường thẳng đi qua tâm 2 đường tròn) là trục đối xứng của hình tạo bởi hai đường tròn. Chú ý: – Nếu hai đường tròn tiếp xúc nhau thì tiếp điểm nằm trên đường nối tâm. – Nếu hai đường tròn cắt nhau thì đường nối tâm là đường trung trực của dây chung. 2. Liên hệ giữa vị trí của hai đường tròn với đoạn nối tâm d và các bán kính R r. 3. Tiếp tuyến chung của hai đường tròn. Tiếp tuyến chung của hai đường tròn là đường thẳng tiếp xúc với cả hai đường tròn đó. a) Hai đường tròn cắt nhau có hai tiếp tuyến chung ngoài. b) Hai đường tròn tiếp xúc ngoài có hai tiếp tuyến chung ngoài và một tiếp tuyến chung (hình vẽ b). c) Hai đường tròn tiếp xúc trong chỉ có một tiếp tuyến chung (hình c). d) Hai đường tròn ngoài nhau có hai tiếp tuyến chung ngoài và hai tiếp tuyến chung trong (hình vẽ d). e) Hai đường tròn chứa nhau không có tiếp tuyến chung. f) Hai đường tròn đồng tâm không có tiếp tuyến chung. B. Bài tập và các dạng toán. Dạng 1 : Các bài toán liên quan đến hai đường tròn tiếp xúc nhau. Cách giải: Áp dụng các kiến thức về vị trí tương đối của hai đường tròn liên quan đến trường hợp hai đường tròn tiếp xúc nhau ABH ANH. Dạng 2 : Các bài toán liên quan đến hai đường tròn cắt nhau. Cách giải : Áp dụng các kiến thức về vị trí tương đối của hai đường tròn liên quan đến trường hợp hai đường tròn cắt nhau. Dạng 3 : Các bài toán về hai đường tròn không cắt nhau. Cách giải: Áp dụng các kiến thức về vị trí tương đối của hai đường tròn liên quan đến trường hợp hai đường tròn không giao nhau. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề đồ thị của hàm số y ax + b (a khác 0)
Tài liệu gồm 23 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề đồ thị của hàm số y = ax + b (a khác 0) trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Đồ thị của hàm số bậc nhất. 2. Cách vẽ đồ thị hàm số bậc nhất y = ax + b (a khác 0). 3. Chú ý. B. Bài tập và các dạng toán. Dạng 1 : Vẽ đồ thị hàm số bậc nhất. Dạng 2 : Tìm tọa độ giao điểm của hai đường thẳng. Cách giải: Cho hai đường thẳng d y ax b và d y ax b. Để tìm tọa độ giao điểm của d và d’, ta làm như sau: Cách 1: Dùng phương pháp đồ thị (thường sử dụng trong trường hợp d và d’ cắt nhau tại điểm có tọa độ nguyên). – Vẽ d và d’ trên cùng một hệ trục tọa độ. – Xác định tọa độ giao điểm trên hình vẽ. – Chứng tỏ tọa độ giao điểm đó cùng thuộc d và d’. Cách 2: Dùng phương pháp đại số. – Xét phương trình hoành độ giao điểm của d và d’: ax b a x b. – Từ phương trình hoành độ giao điểm, tìm được x và thay vào phương trình của d (hoặc d’) để tìm y. – Kết luận tọa độ giao điểm của d và d’. Dạng 3 : Xét tính đồng quy của ba đường thẳng. Cách giải: Chú ý: Ba đường thẳng đồng quy là ba đường thẳng phân biệt và cùng đi qua 1 điểm. Để xét tính đồng quy của ba đường thẳng (phân biệt) cho trước, ta làm như sau: + Tìm tọa độ giao điểm của 2 trong 3 đường thẳng đã cho. + Kiểm tra xem nếu giao điểm vừa tìm được thuộc đường thẳng còn lại thì kết luận ba đường thẳng đó đồng quy. Dạng 4 : Tính khoảng cách từ gốc tọa độ O đến một đường thẳng không đi qua O. Cách giải: Để tính khoảng cách từ O đến đường thẳng d (không đi qua O) ta làm như sau: Bước 1: Tìm A B lần lượt là giao điểm của d với Ox và Oy. Bước 2: Gọi H là hình chiếu vuông góc của O trên d. Khi đó: 222 1 11 OH OA OB. Dạng 5 : Tìm điểm cố định mà hàm số luôn đi qua phụ thuộc vào tham số m. Cách giải: 1. Khái niệm điểm cố định: Điểm Mxy là điểm cố định của (d y ax b) (a b phụ thuộc vào tham số m a 0) khi và chỉ khi điểm M luôn thuộc (d) với mọi điều kiện của tham số m. Hoặc tương đương với điều kiện: 0 0 y ax b với mội điều kiện của tham số. 2. Cách tìm điểm cố định. Gọi Ix y là điểm cố định của 0 d y ax b m. Biến đổi 0 0 y ax b về dạng Ax y m Bx y hoặc 2 0 0 Ax y m Bx y m Cx y. Từ đó tìm được 0 0 x y rồi kết luận. 3. Chú ý: Cách tính khoảng cách từ Ax y đến Bx y trên hệ trục tọa độ Oxy 2 2 12 12 AB y y x. Dạng 6 : Tìm tham số m sao cho khoảng cách từ gốc tọa độ đến đường thẳng cho trước là lớn nhất. Cách giải: Cho đường thẳng (d y ax b) phụ thuộc tham số m. Muốn tìm m để khoảng cách từ O đến d là lớn nhất, ta có thể làm theo một trong hai cách sau. Cách 1: Phương pháp hình học. – Gọi A B lần lượt là giao điểm của d với Ox và Oy; H là hình chiếu vuông góc của O trên d. – Ta có khoảng cách từ O đến d là OH và được tính bởi công thức sau: 222 1 11 OH OB OC. – Từ đó tìm điều kiện của m để OH đạt giá trị lớn nhất. Cách 2: Dùng phương pháp điểm cố định. – Tìm được I là điểm cố định mà d luôn đi qua. – Gọi H là hình chiếu vuông góc của O trên d OH OI hằng số d ⇒ OH OI. – Ta có: OH OI d max là đường thẳng qua I và vuông góc với OI. Từ đó tìm được tham số m. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề hàm số bậc nhất
Tài liệu gồm 17 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề hàm số bậc nhất trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Khái niệm: Hàm số bậc nhất là hàm số được cho bởi công thức y = ax + b, trong đó a và b là hai số đã cho và a ≠ 0. Nếu b = 0 thì hàm số có dạng y = ax. 2. Các tính chất của hàm số bậc nhất. – Hàm số bậc nhất y = ax + b xác định với mọi giá trị của x thuộc R. – Hàm số bậc nhất: + Đồng biến trên R khi a > 0. + Nghịch biến trên R khi a < 0. B. Bài tập và các dạng toán. Dạng 1 : Nhận dạng hàm số bậc nhất. Cách giải: Hàm số bậc nhất là hàm số có dạng: y = ax + b (a ≠ 0). Dạng 2 : Xét tính đồng biến và nghịch biến của hàm số bậc nhất. Cách giải: Xét hàm số bậc nhất y = ax + b (a ≠ 0). + Đồng biến trên R khi a > 0. + Nghịch biến trên R khi a < 0. Dạng 3 : Giá trị của hàm số. Cách giải: Để tính giá trị của hàm số y = f(x) tại x = a ta thay x = a vào f(x) và viết là f(a). BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.