Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi KSCL Toán 12 lần 4 năm 2018 - 2019 trường Nông Cống 2 - Thanh Hóa

Nhằm kiểm tra kiến thức môn Toán của học sinh khối 12 trong quá trình các em ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán năm 2019, vừa qua, trường THPT Nông Cống 2, tỉnh Thanh Hóa đã tổ chức kỳ thi khảo sát chất lượng môn Toán 12 năm học 2018 – 2019 lần thứ 4. Đề thi KSCL Toán 12 lần 4 năm 2018 – 2019 trường Nông Cống 2 – Thanh Hóa có mã đề 61, đề được biên soạn theo dạng đề trắc nghiệm khách quan, đề gồm 7 trang với 50 câu hỏi và bài toán, thời gian học sinh làm bài là 90 phút, đề thi có đáp án mã đề 61, 62, 63, 64. Trích dẫn đề thi KSCL Toán 12 lần 4 năm 2018 – 2019 trường Nông Cống 2 – Thanh Hóa : + Đội thanh niên xung kích của trường THPT Nông Cống 2, tỉnh Thanh Hóa gồm 15 học sinh trong đó có 4 học sinh khối 12, 5 học sinh khối 11 và 6 học sinh khối 10. Chọn ngẫu nhiên ra 6 học sinh đi làm nhiệm vụ. Tính xác suất để chọn được 6 học sinh có đủ 3 khối. [ads] + Một cái “cù” (đồ chơi trẻ em) gồm hai khối: Khối trụ (H1) và khối nón (H2) như hình bên. Chiều cao và bán kính khối trụ lần lượt bằng h1, r1, chiều cao và bán kính đáy của khối nón lần lượt bằng h2, r2 thỏa mãn h1 = 1/3.h2, r1 = 1/2.r2. Biết thể tích toàn khối là 30cm3, thể tích khối (H1) bằng? + Một người gửi 100 triệu đồng vào một ngân hàng với lãi suất 8,4%/năm. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn để tính lãi cho năm tiếp theo. Hỏi sau đúng 6 năm, người đó lĩnh được số tiền (cả vốn và lãi) gần nhất với số tiền nào dưới đây, nếu trong thời gian đó người này không rút tiền ra và lãi suất không thay đổi?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT 2023 môn Toán cụm thi đua số 1 - Ninh Thuận
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2023 môn Toán cụm thi đua số 1, tỉnh Ninh Thuận; đề thi có đáp án mã đề 152. Trích dẫn Đề thi thử tốt nghiệp THPT 2023 môn Toán cụm thi đua số 1 – Ninh Thuận : + Trong không gian Oxyz, cho mặt cầu 2 22 Sx y z x y z 2 2 2 20. Gọi N là hình nón có thể tích lớn nhất nội tiếp trong mặt cầu S và T là hình trụ có diện tích xung quanh lớn nhất nội tiếp bên trong hình nón (tham khảo hình vẽ). Khi đó, điểm nào dưới đây có thể thuộc đường tròn đáy của hình trụ? + Cho khối nón đỉnh S có đường kính đáy là 2 3. Gọi O là tâm đường tròn đáy. Một mặt phẳng P đi qua đỉnh S và cắt hình tròn đáy theo một dây AB có độ dài bằng 6, biết rằng khi đó thể tích của tứ diện SOAB bằng 1. Tính diện tích tam giác SAB. + Trong không gian Oxyz, cho mặt cầu S tâm I 1 0 2 bán kính R 1. Khẳng định nào sau đây đúng? A. Mặt phẳng Oyz tiếp xúc với mặt cầu S. B. Mặt phẳng Oyz cắt mặt cầu S. C. Mặt phẳng Oxy tiếp xúc với mặt cầu S. D. Mặt phẳng Oxz tiếp xúc với mặt cầu S.
Đề thi thử TN THPT 2022 - 2023 môn Toán sở GDĐT Hà Tĩnh (online lần 2)
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp Trung học Phổ thông năm học 2022 – 2023 môn Toán sở Giáo dục và Đào tạo tỉnh Hà Tĩnh lần thứ hai, kỳ thi được diễn ra theo hình thức thi trực tuyến (online) trên máy tính, điện thoại; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề thi thử TN THPT 2022 – 2023 môn Toán sở GD&ĐT Hà Tĩnh (online lần 2) : + Cho phương trình 2 2 z mz m 3 0 với m là tham số thực. Gọi S là tập hợp các giá trị của m sao cho phương trình đã cho có hai nghiệm phức có điểm biểu diễn là A, B và tam giác OAB có diện tích bằng 6. Tổng bình phương các phần tử của S bằng? + Trong không gian Oxyz, cho tam giác ABC có A(6;0;0), B(6;8;0), C(0;8;0). Gọi mặt phẳng α đi qua B và vuông góc với AC. Điểm M thay đổi thoả mãn ABM AMC 90°. Gọi N là giao điểm của AM và α. Khoảng cách từ N đến ABC có giá trị lớn nhất bằng? + Cho khối trụ T có bán kính đáy bằng 2 3a. Gọi A và B là hai điểm thuộc hai đường tròn đáy của T sao cho khoảng cách và góc giữa AB và trục của T bằng 2a và 60°. Thể tích của khối trụ đã cho bằng?
Đề thi thử tốt nghiệp THPT 2023 môn Toán trường THPT Bình Sơn - Quảng Ngãi
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2022 – 2023 môn Toán trường THPT Bình Sơn, tỉnh Quảng Ngãi (mã đề 002); đề thi có hướng dẫn giải các bài toán vận dụng và vận dụng cao. Trích dẫn Đề thi thử tốt nghiệp THPT 2023 môn Toán trường THPT Bình Sơn – Quảng Ngãi : + Cho hình trụ có bán kính đáy R = 8 và chiều cao h = 10. Cắt hình trụ đã cho bởi mặt phẳng song song với trục và cách trục một khoảng bằng 2, thiết diện thu được là hình chữ nhật ABCD. Gọi I là tâm hình chữ nhật ABCD, đường thẳng qua I và vuông góc với (ABCD) cắt mặt trụ tại điểm S (với SI > 8). Gọi (N) là khối nón có đỉnh S và có đường tròn đáy ngoại tiếp hình chữ nhật ABCD. Tính thể tích của khối nón (N). + Trong không gian Oxyz, cho hai điểm A(1;-2;-4) và điểm B(−3;1;2). Xét hai điểm M và N thay đổi thuộc mặt phẳng (Oxy) sao cho diện tích hình tròn đường kính MN có diện tích bằng 9 4 π. Giá trị lớn nhất của AM BN bằng? + Cho hàm số f x có đạo hàm trên [0;+∞) thỏa mãn f (0 1) fx x 0 0 và 1 0 2 1 x fx. Diện tích hình phẳng giới hạn bởi các đường y fx 2 y fx và đường thẳng x = 4 bằng?
Đề thi thử tốt nghiệp THPT 2023 môn Toán đợt 2 sở GDĐT Thái Nguyên
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2023 môn Toán đợt 2 sở Giáo dục và Đào tạo tỉnh Thái Nguyên; đề thi có đáp án tất cả các mã đề và hướng dẫn giải chi tiết các câu vận dụng – vận dụng cao (từ câu 36 đến câu 50). Trích dẫn đề thi thử tốt nghiệp THPT 2023 môn Toán đợt 2 sở GD&ĐT Thái Nguyên : + Người ta muốn làm giá đỡ cho quả cầu bằng ngọc có bán kính r cm 25 sao cho phần quả cầu bị khuất chiếm 1 5 quả cầu theo chiều cao của nó. Biết giá đỡ hình trụ và rỗng phía trong, bán kính đường tròn đáy của hình trụ bên trong của giá đỡ bằng? + Cho hàm số 2 y x có đồ thị (C), biết rằng tồn tại hai điểm A B thuộc đồ thị (C) sao cho tiếp tuyến tại A B và hai đường thẳng lần lượt vuông góc với hai tiếp tuyến tại A B tạo thành một hình chữ nhật (H) có chiều dài gấp đôi chiều rộng (minh họa như hình vẽ). Gọi 1 S là diện tích hình phẳng giới hạn bởi đồ thị (C) và hai tiếp tuyến tại A B. 2 S là diện tích hình chữ nhật (H). Tỉ số 1 2 S S bằng? + Một người thợ gò làm một cái hòm dạng hình hộp chữ nhật có nắp bằng tôn. Biết rằng độ dài đường chéo hình hộp bằng 3 2 dm và chỉ được sử dụng vừa đủ 2 18dm tôn. Với yêu cầu như trên người thợ có thể làm được cái hòm có thể tích lớn nhất bằng?