Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Khánh Hòa

Nội dung Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Khánh Hòa Bản PDF - Nội dung bài viết Đề Tuyển Sinh Vào Môn Toán Năm 2023 2024 Sở GD ĐT Khánh Hòa Đề Tuyển Sinh Vào Môn Toán Năm 2023 2024 Sở GD ĐT Khánh Hòa Sytu xin gửi đến quý thầy cô và các em học sinh Đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 của sở Giáo dục và Đào tạo tỉnh Khánh Hòa. Kỳ thi sẽ diễn ra vào thứ Hai ngày 05 tháng 06 năm 2023. Trong Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 của sở GD&ĐT Khánh Hòa, có những câu hỏi thú vị và đa dạng: 15 học sinh từ trường THCS X tham gia trồng cây. Tổ I trồng được 30 cây, tổ II trồng được 36 cây. Biết mỗi học sinh ở tổ I trồng được nhiều hơn mỗi học sinh ở tổ II là 1 cây. Hỏi mỗi tổ có bao nhiêu học sinh? Gạch xây 3 lỗ (như hình vẽ) được làm bằng đất nung, có các kích thước cụ thể. Yêu cầu tính thể tích phần đất nung của một viên gạch dựa trên công thức đã cho. Đề tài khám phá về tam giác và tứ giác, yêu cầu chứng minh các tính chất phức tạp của các hình học. Phần cuối của Đề tuyển sinh đề cập đến các vấn đề liên quan đến hình học không gian và tính chất của các hình học phức tạp, đòi hỏi học sinh cần phải có kiến thức sâu rộng và suy luận logic tốt. Với nội dung đa dạng và phong phú như vậy, Đề tuyển sinh vào môn Toán năm 2023 2024 của sở GD ĐT Khánh Hòa không chỉ giúp học sinh ôn tập kiến thức một cách hiệu quả mà còn giúp họ phát triển kỹ năng tư duy logic và giải quyết vấn đề. Chúc quý thầy cô và các em học sinh chuẩn bị tốt cho kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề Toán tuyển sinh lớp 10 THPT năm 2019 - 2020 sở GD và ĐT Đắk Lắk
Ngày 07 tháng 06 năm 2019, sở Giáo dục và Đào tạo tỉnh Đắk Lắk tổ chức kỳ thi môn Toán tuyển sinh vào lớp 10 Trung học Phổ thông năm học 2019 – 2020, nhằm tuyển chọn các em học sinh lớp 9 đáp ứng yêu cầu học lực môn Toán, vào học tại các trường THPT trực thuộc sở GD&ĐT tỉnh Đắk Lắk, để chuẩn bị cho năm học mới. Đề Toán tuyển sinh lớp 10 THPT năm 2019 – 2020 sở GD và ĐT Đắk Lắk bao gồm 05 bài toán, đề thi gồm có 01 trang, đề được biên soạn theo dạng tự luận, thời gian làm bài 120 phút, đề thi có lời giải chi tiết. Trích dẫn đề Toán tuyển sinh lớp 10 THPT năm 2019 – 2020 sở GD và ĐT Đắk Lắk : + Một cốc nước dạng hình trụ có chiều cao 12cm, bán kính đáy 2cm, lượng nước trong cốc cao 8cm. Người ta thả vào cốc nước 6 viên bi hình cầu có cùng bán kính 1cm và ngập hoàn toàn trong nước làm nước trong cốc dâng lên. Hỏi sau khi thả 6 viên bi vào thì mực nước trong cốc cách miệng cốc bao nhiêu xentimét? (giả sử độ dày của cốc là không đáng kể). + Trong mặt phẳng tọa độ Oxy cho đường thẳng d có phương trình y = -x + √2/2. Gọi A, B lần lượt là giao điểm của d với trục hoành và trục tung; H là trung điểm của AB. Tính độ dài đoạn thẳng OH (đơn vị đo trên các trục tọa độ là xentimét). + Cho đường tròn (O) hai đường kính AB, CD vuông góc với nhau. Điểm M thuộc cung nhỏ BD sao cho góc BOM = 30 độ. Gọi N là giao điểm của CM và OB. Tiếp tuyến tại M của đường tròn (O) cắt OB, OD kéo dài lần lượt tại E và F. Đường thẳng qua N và vuông góc với AB cắt EF tại P. 1) Chứng minh tứ giác ONMP là tứ giác nội tiếp. 2) Chứng minh tam giác EMN là tam giác đều. 3) Chứng minh: CN = OP. 4) Gọi H là trục tâm tam giác AEF. Hỏi ba điểm A, H, P có thẳng hàng không? Vì sao?
Đề Toán tuyển sinh lớp 10 THPT năm 2019 - 2020 sở GDĐT Thanh Hóa
THCS. giới thiệu đến đọc giả đề Toán tuyển sinh lớp 10 THPT năm 2019 – 2020 sở GD&ĐT Thanh Hóa, đề thi được biên soạn theo dạng đề tự luận với 5 bài toán, đề thi gồm 01 trang, học sinh làm bài trong khoảng thời gian 120 phút (2 tiếng đồng hồ), đề thi có lời giải chi tiết. Trích dẫn đề Toán tuyển sinh lớp 10 THPT năm 2019 – 2020 sở GD&ĐT Thanh Hóa : + Từ một điểm A nằm ngoài đường tròn tâm O bán kính R, kẻ các tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm). Trên cung nhỏ BC lấy một điểm M bất kỳ khác B và C. Gọi I, K, P lần lượt là hình chiếu vuông góc của điểm M trên các đường thẳng AB, AC, BC. 1. Chứng minh rằng AIMK là tứ giác nội tiếp. 2. Chứng minh MPK = MBC. 3. Xác định vị trí điểm M trên cung nhỏ BC để tích MI.MK.MP đạt giá trị nhỏ nhất. + Cho đường thẳng (d): y = ax + b. Tìm a, b đế đường thẳng (d) song song với đường thẳng (d’): y = 5x + 6 và đi qua điểm A(2;3). + Cho phương trình x^2 – 2(m – 1)x + 2m – 5 = 0 (m là tham số). Chứng minh rằng phương trình luôn có hai nghiệm phân biệt x1, x2 với mọi m.
Đề tuyển sinh vào lớp 10 năm 2019 - 2020 môn Toán sở GDĐT Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề tuyển sinh vào lớp 10 năm học 2019 – 2020 môn Toán sở GD&ĐT Nghệ An, đề thi được biên soạn theo dạng tự luận, với cấu trúc tương tự các năm học trước, đề thi gồm 5 bài toán, thời gian học sinh làm bài 120 phút. Trích dẫn đề thi chính thức tuyển sinh vào lớp 10 năm 2019 – 2020 môn Toán sở GD&ĐT Nghệ An : + Cho đường tròn (O) có hai đường kính AB và MN vuông góc với nhau. Trên tia đối của tia MA lấy điểm C khác điểm M. Kẻ MH vuông góc với BC (H thuộc BC). a) Chứng minh BOMH là tứ giác nội tiếp. b) MB cắt OH tại E. Chứng minh ME.HM = BE.HC. c) Gọi giao điểm của đường tròn (O) và đường tròn ngoại tiếp tam giác MHC là K.Chứng minh ba điểm C, K, E thẳng hàng. + Tình cảm gia đình có sức mạnh thật phi thường. Bạn Vi Quyết Chiến – Cậu bé 13 tuổi quá thương nhớ em trai của mình đã vượt qua một quãng đường dài 180 km từ Sơn La đến bệnh viện nhi Trung ương Hà Nội để thăm em. Sau khi đi bằng xe đạp 7 giờ, bạn ấy được lên xe khách và đi tiếp 1 giờ 30 phút nữa thì đến nơi. Biết vận tốc của xe khách lớn hơn vận tốc của xe đạp là 35 km/giờ. Tính vận tốc xe đạp của bạn Chiến. + Xác định hàm số bậc nhất y = ax + b biết rằng đồ thị của hàm số đi qua hai điểm M(1;-1) và N(2;1).
Đề tuyển sinh lớp 10 chuyên năm 2019 - 2020 môn Toán sở GDĐT Gia Lai
THCS. giới thiệu đến quý thầy, cô giáo cùng các bạn học sinh đề thi chính thức tuyển sinh vào lớp 10 chuyên năm học 2019 – 2020 môn Toán sở GD&ĐT Gia Lai, đề thi được dành cho các bạn học sinh đăng ký học các lớp không chuyên tại các trường THPT chuyên trực thuộc sở Giáo dục và Đào tạo tỉnh Gia Lai. Đề tuyển sinh lớp 10 chuyên năm 2019 – 2020 môn Toán sở GD&ĐT Gia Lai gồm 1 trang với 5 bài toán dạng tự luận, thời gian học sinh làm bài là 120 phút. Trích dẫn đề tuyển sinh lớp 10 chuyên năm 2019 – 2020 môn Toán sở GD&ĐT Gia Lai : + Cho phương trình x^2 + 2(m – 2)x + m^2 – 3m – 1 = 0, với m là tham số. a) Giải phương trình đã cho khi m = 1. b) Xác định giá trị của m để phương trình đã cho có hai nghiệm phân biệt x1, x2 sao cho x1^2 – x1x2 + x2^2 = 9. + Quãng đường AB dài 180 km. Cùng một lúc, hai ô tô khởi hành từ A đến B. Mỗi giờ ô tô thứ nhất chạy nhiều hơn ô tô thứ hai 10 km nên ô tô thứ nhất đến B trước ô tô thứ hai 36 phút. Tính vận tốc trung bình của mỗi ô tô. + Cho đường tròn (O) và điểm A nằm ngoài (O). Đường thẳng AC cắt đường tròn (O) tại hai điểm B và C (AB < AC). Qua A vẽ một đường thẳng không đi qua điểm O, cắt đường tròn (O) tại hai điểm D và E (AD < AE). Đường thẳng vuông góc với AC tại A cắt đường thẳng CE tại F. a) Chứng minh tứ giác ABEF nội tiếp đường tròn. b) Gọi M là giao điểm của đường thẳng FB và đường tròn (O) (M không trùng B). Chứng minh AC là đường trung trực của đoạn thẳng DM. c) Chứng minh CE.CF + AD.AE = AC^2.