Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối học kì 1 (HK1) lớp 10 môn Toán năm 2023 2024 trường THPT chuyên Quốc học Huế

Nội dung Đề cuối học kì 1 (HK1) lớp 10 môn Toán năm 2023 2024 trường THPT chuyên Quốc học Huế Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra cuối học kỳ 1 môn Toán lớp 10 năm học 2023 – 2024 trường THPT chuyên Quốc học Huế, tỉnh Thừa Thiên Huế; đề thi gồm 05 trang, hình thức 70% trắc nghiệm (35 câu) + 30% tự luận (03 câu), thời gian làm bài 90 phút; đề thi có đáp án. Trích dẫn Đề cuối kỳ 1 Toán lớp 10 năm 2023 – 2024 trường THPT chuyên Quốc học Huế : + Bảng sau cho biết nhiệt độ không khí trung bình vào tháng 7 năm 2022 tại 15 trạm quan trắc (theo Tổng cục Thống kê). Trạm quan trắc Nhiệt độ (°C) Trạm quan trắc Nhiệt độ (°C) Lai Châu 25,1 Đà Nẵng 29,6 Sơn La 26,4 Quy Nhơn 29,7 Tuyên Quang 29,9 Pleiku 23,6 Hà Nội (Láng) 30,6 Đà Lạt 19,6 Bãi Cháy 29,2 Nha Trang 28,9 Nam Định 29,9 Vũng Tàu 28,0 Vinh 30,1 Cà Mau 27,9 Huế 29,1. Tìm số trung bình, các tứ phân vị, khoảng biến thiên và phương sai của bảng số liệu trên. + Trong mặt phẳng tọa độ Oxy, cho A 2 5 B 5 2 và C 2 1. a) Chứng minh rằng A, B, C là ba đỉnh của một tam giác vuông và tính diện tích của tam giác đó. b) Tìm tọa độ điểm D trên trục Ox sao cho ABCD là hình thang có AB và CD là các cạnh đáy. c) Tìm tọa độ điểm M trên đường thẳng BC sao cho AM cùng phương với u AB AC. + Tại vị trí A trên đoạn đường nằm ngang và A trên đoạn đường dốc người ta dựng các cột điện vuông góc với phương ngang, có cùng chiều cao là AB A B 10 m. Tại cùng một thời điểm trong ngày, người ta đo được bóng trên mặt đất của hai cột điện ở vị trí vị trí A A lần lượt là AC 9m (trên đoạn đường nằm ngang) và A C 17 m (trên đoạn đường dốc) (xem hình vẽ). Tính độ dốc của đoạn đường dốc (các kết quả làm tròn đến một chữ số thập phân). Biết rằng tại cùng một thời điểm trong ngày, các tia sáng mặt trời xem như song song với nhau; độ dốc (%) được tính bằng tang của góc nhọn tạo bởi đoạn đường dốc với phương ngang và nhân với 100%.

Nguồn: sytu.vn

Đọc Sách

Đề thi HK1 Toán 10 năm 2020 - 2021 trường THPT Ngô Gia Tự - Đắk Lắk
Chiều thứ Tư ngày 30 tháng 12 năm 2020, trường THPT Ngô Gia Tự, huyện Ea Kar, tỉnh Đắk Lắk tổ chức kỳ thi khảo sát chất lượng cuối học kì 1 môn Toán lớp 10 năm học 2020 – 2021. Đề thi HK1 Toán 10 năm 2020 – 2021 trường THPT Ngô Gia Tự – Đắk Lắk được biên soạn theo hình thức trắc nghiệm kết hợp tự luận, phần trắc nghiệm gồm 20 câu, chiếm 04 điểm, phần tự luận gồm 05 câu, chiếm 06 điểm, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HK1 Toán 10 năm 2020 – 2021 trường THPT Ngô Gia Tự – Đắk Lắk : + Trong không gian với hệ tọa độ Oxy, cho tam giác ABC với A(2;2), B(8;2), C(8;8). a) Tìm tọa độ các vectơ AB, AC và số đo góc CAB của tam giác ABC. b) Tìm m để điểm M(m;0) tạo với hai điểm A, B lập thành tam giác MAB vuông tại M. + Trong các câu sau: a) Cố lên, sắp tết rồi! b) Hà Nội là thủ đô của Việt Nam. c) 4 > 4. d) x = 1 + 2. Có bao nhiêu câu là mệnh đề? + Trong mặt phẳng tọa độ Oxy, cho (P) có phương trình: y = -2x^2 + bx + c. Tìm b và c biết (P) qua hai điểm A(-1;2) và B(-2;0).
Đề thi cuối kì 1 Toán 10 năm 2020 - 2021 trường THPT Thường Tín - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh khối lớp 10 đề thi cuối kì 1 Toán 10 năm học 2020 – 2021 trường THPT Thường Tín – Hà Nội; đề thi được biên soạn theo hình thức trắc nghiệm kết hợp với tự luận, phần trắc nghiệm gồm 15 câu, chiếm 3,0 điểm, phần tự luận gồm 05 câu, chiếm 7,0 điểm, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi cuối kì 1 Toán 10 năm 2020 – 2021 trường THPT Thường Tín – Hà Nội : + Một sợi dây có chiều dài là 6 mét được chia thành hai phần. Phần thứ nhất được uốn thành hình tam giác đều, phần thứ hai uốn thành hình vuông. Hỏi độ dài của cạnh hình tam giác đều bằng bao nhiêu mét để tổng diện tích hai hình thu được là nhỏ nhất? + Cho tam giác ABC có điểm M thuộc cạnh AC sao cho MA = -2MC, điểm N thuộc cạnh BM sao cho NB = -3NM, điểm P thuộc cạnh BC sao cho PB = kPC. a) Hãy phân tích véc tơ AN theo hai véc tơ AB và AC. b) Tìm giá trị của k để ba điểm A, N, P thẳng hàng. + Cho tam giác ABC. Tập hợp điểm M thỏa mãn: |MA + 2MB + 3MC| = |MB – MC| là: A. Đường tròn bán kính BC. B. Đường trung trực của đoạn BC. C. Trung điểm của BC. D. Đường tròn bán kính BC/6.
Đề thi học kì 1 Toán 10 năm học 2020 - 2021 sở GDĐT Vĩnh Phúc
Ngày … tháng 12 năm 2020, sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 10 giai đoạn cuối học kì 1 năm học 2020 – 2021. Đề thi học kì 1 Toán 10 năm học 2020 – 2021 sở GD&ĐT Vĩnh Phúc gồm 02 trang với 16 câu trắc nghiệm và 04 câu tự luận, phần trắc nghiệm chiếm 4,0 điểm, phần tự luận chiếm 6,0 điểm, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết mã đề 135, 213, 358, 486. Trích dẫn đề thi học kì 1 Toán 10 năm học 2020 – 2021 sở GD&ĐT Vĩnh Phúc : + Trong mặt phẳng tọa độ Oxy, cho hai điểm A(2;-3) và B(-4;1). a) Tìm tọa độ trung điểm của đoạn thẳng AB. b) Tìm tọa độ điểm C sao cho A là trọng tâm của tam giác OBC (O là gốc tọa độ). + Cho hàm số y = x^2 + ax + b. Tìm các hệ số a, b biết đồ thị hàm số đi qua hai điểm M(-1;0), N(-2;-1). + Cho phương trình x^2 – 2x – 4√(x^2 – 2x + 2) + 2m – 1 = 0 (x là ẩn, m là tham số). Tìm tất cả các giá trị của m để phương trình trên có đúng hai nghiệm phân biệt.
Đề thi HK1 Toán 10 năm 2020 - 2021 trường THPT Lê Quý Đôn - Hà Nội
Đề thi HK1 Toán 10 năm 2020 – 2021 trường THPT Lê Quý Đôn – Hà Nội gồm 10 câu trắc nghiệm và 09 câu tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi HK1 Toán 10 năm 2020 – 2021 trường THPT Lê Quý Đôn – Hà Nội : + Cho phương trình x2 – (2m – 1)x + m2 – 3m + 1 = 0 (m là tham số). Tìm tất cả các giá trị của m để phương trình có hai nghiệm x1, x2 sao cho biểu thức P = x1(x2 + 2) + x2(x1 + 2) đạt giá trị nhỏ nhất. + Cho tam giác ABC. Điểm M trên cạnh BC thỏa mãn BM = 1/3.BC. N là trung điểm của AC. Điểm P thỏa mãn AP = 2AB. a. Phân tích AM qua hai véctơ không cùng phương AB, AC. b. Chứng minh rằng M, N, P thẳng hàng. + Trong mặt phẳng tọa độ Oxy cho hai vectơ a(-3;1), b(2;5). Tính tọa độ của véctơ u = 2a – b.