Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Khánh Hòa

Thứ Năm ngày 03 tháng 06 năm 2021, sở Giáo dục và Đào tạo tỉnh Khánh Hòa tổ chức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2021 – 2022. Đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Khánh Hòa gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 120 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Khánh Hòa : + Theo kế hoạch, Công an tỉnh Khánh Hòa sẽ cấp 7200 thẻ Căn cước công dân cho địa phương A. Một tổ công tác được điều động đến địa phương A để cấp thẻ Căn cước công dân trong một thời gian nhất định. Khi thực hiện nhiệm vụ, tổ công tác đã cải tiến kĩ thuật nên mỗi ngày đã cấp tăng thêm được 40 thẻ Căn cước so với kế hoạch. Vì vậy, tổ công tác đã hoàn thành nhiệm vụ sớm hơn kế hoạch 2 ngày. Hỏi theo kế hoạch ban đầu, mỗi ngày tổ công tác sẽ cấp được bao nhiêu thẻ Căn cước? + Cho tam giác ABC có ba góc nhọn, nội tiếp trong đường tròn O R và hai đường cao BE CF cắt nhau tại H. a) Chứng minh BCEF là tứ giác nội tiếp đường tròn. b) Chưng minh OA EF. c) Hai đường thẳng BE, CF lần lượt cắt đường tròn (O) tại điểm thứ hai là N và P. Đường thẳng AH cắt đường tròn (O) tại điểm thứ hai là M và cắt BC tại D. Tính giá trị biểu thức AM BN CP AD BE CF. + Trên mặt phẳng tọa độ, cho parabol 2 P y x và đường thẳng 2 2 2 d y x m m (m là tham số). a) Biết A là một điểm thuộc P và có hoành độ 2 A x. Xác định tọa độ điểm A. b) Tìm tất cả các giá trị của m để d cắt P tại hai điểm phân biệt. c) Xác định tất cả các giá trị của m để d cắt P tại hai điểm phân biệt có hoành độ lần lượt là 1 x và 2 x thỏa mãn điều kiện 2 1 2 x x m 2 3.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Đắk Lắk
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Đắk Lắk. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Đắk Lắk : + Một khu vườn hình chữ nhật có chiều rộng ngắn hơn chiều dài 45m. Tính diện tích của khu vườn, biết rằng nếu chiều dài giảm 2 lần và chiều rộng tăng 3 lần thì chu vi khu vườn không thay đổi. + Cho nửa đường tròn tâm O đường kính AB. Gọi M là điểm chính giữa cung AB, E là điểm trên cung AM (E khác A và M). Lấy điểm F trên đoạn BE sao cho BF = AE. Gọi K là giao điểm của MO và BE. a) Chứng minh rằng EAOK là tứ giác nội tiếp. b) Chứng minh rằng AEMF vuông cân. c) Hai đường thẳng AE và OM cắt nhau tại D. Chứng minh rằng MK.ED = MD.EK. + Bút chì có dạng hình trụ, có đường kính đáy 8mm và chiều cao bằng 180mm. Thân bút chì được làm bằng gỗ, phần lõi được làm bằng than chì. Phần lõi có dạng hình trụ có chiều cao bằng chiều dài bút và đáy là hình tròn có đường kính 2mm. Tính thể tích phần gỗ của 2024 chiếc bút chì (lấy pi = 3,14).
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Đà Nẵng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo thành phố Đà Nẵng; đề thi dành cho thí sinh thi vào trường THPT chuyên Lê Quý Đôn, Đà Nẵng. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Đà Nẵng : + Trên cùng một mặt phẳng tọa độ, cho parabol (P): y = x2 và đường thẳng (d): y = kx + 5. Đường thẳng (d) cắt parabol (P) tại hai điểm A và B. Gọi C, D lần lượt là hình chiếu của A, B trên trục Ox. a) Khi k = −4, tính diện tích hình thang ABDC. b) Tìm tất cả các giá trị của k để AD và BC cắt nhau tại một điểm nằm trên đường tròn đường kính CD. + Cho tam giác nhọn ABC với AB < AC, nội tiếp đường tròn (O). Các tiếp tuyến của đường tròn (O) tại B và C cắt nhau ở D. Đường tròn đường kính AD cắt đường tròn đường kính OD tại điểm E (khác D). Gọi F là giao điểm của đoạn thẳng OE và đường tròn (O). a) Chứng minh rằng ba điểm A, O, E thẳng hàng và CF là tia phân giác của góc BCE. b) Các tia AB, AC lần lượt cắt đường tròn đường kính AD tại các điểm G, K (đều khác A). Chứng minh rằng OD đi qua trung điểm của đoạn thẳng GK. + Cho tam giác nhọn ABC có AB < AC < BC, đường tròn (O) nội tiếp tam giác ABC tiếp xúc với cạnh AB tại M. Lấy điểm E nằm giữa A và M. Trên cạnh AC, BC lần lượt lấy các điểm D, F sao cho AD = AE và BF = BE. Đường tròn ngoại tiếp tam giác DEF lần lượt cắt AB và BC tại G (khác E) và H (khác F). Chứng minh rằng O là tâm đường tròn ngoại tiếp tam giác DEF và các đường thẳng CM, ED, GH đồng quy.
Đề tuyển sinh lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Thái Bình (đề thi chung dành cho tất cả các thí sinh tham dự kỳ thi). Trích dẫn Đề tuyển sinh lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Thái Bình : + Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = 2×2 và đường thẳng (d): y = x + m (với m là tham số). a) Tìm m để (d) đi qua điểm A(2;8). b) Tìm m để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1, x2 thỏa mãn x1 + x2 – 3x1x2 = 5. + Cho tam giác ABC nhọn, nội tiếp đường tròn (O;R). Kẻ AH vuông góc với BC tại H, HK vuông góc với AB tại K và HI vuông góc với AC tại I. a) Chứng minh tứ giác AKHI nội tiếp. b) Gọi E là giao điểm của AH với KI. Chứng minh rằng EA.EH = EK.EI. c) Chứng minh KI vuông góc với AO. d) Giả sử điểm A và đường tròn (O;R) cố định, còn dây cung BC thay đổi sao cho AB.AC = 3R2. Xác định vị trí của dây cung BC sao cho tam giác ABC có diện tích lớn nhất. + Một hình nón có diện tích đáy bằng 167 (cm2) và có chiều cao gấp ba lần bán kính đáy. Tính thể tích của hình nón đó.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Đắk Nông
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Đắk Nông; kỳ thi được diễn ra vào chiều thứ Sáu ngày 09 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Đắk Nông : + Cho parabol (P): y = 1/2.x2 và đường thẳng (d): y = mx – 1/2.m2 + m + 1 với m là tham số. Tìm m để (P) và (d) cắt nhau tại hai điểm phân biệt có hoành độ x1, x2 sao cho |x1 – x2| = 2. + Cho tập hợp A = {201; 203; …; 2021; 2023} gồm 912 số tự nhiên lẻ. Cần chọn ra ít nhất bao nhiêu số từ tập hợp A sao cho trong các số được chọn luôn tồn tại hai số có tổng bằng 2288? + Cho tam giác ABC có 3 góc nhọn (AB < AC). Vẽ đường cao AD, BE, CF của tam giác đó. Gọi H là giao điểm của các đường cao vừa vẽ. Gọi M, N lần lượt là trung điểm của các đoạn thẳng AH và BC. a) Chứng minh rằng MFN là tam giác vuông. b) Chứng minh FMN đồng dạng FAC. c) Gọi P, Q lần lượt là chân các đường vuông góc kẻ từ M, N đến đường thẳng DF. Chứng minh rằng giao điểm của FE và MN thuộc đường tròn đường kính PQ.