Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán thi vào 10 năm 2022 - 2023 phòng GDĐT Ba Đình - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát môn Toán luyện thi tuyển sinh vào lớp 10 năm học 2022 – 2023 phòng Giáo dục và Đào tạo quận Ba Đình, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Sáu ngày 29 tháng 04 năm 2022; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát Toán thi vào 10 năm 2022 – 2023 phòng GD&ĐT Ba Đình – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một đội sản xuất phải làm 10 000 khẩu trang trong một thời gian quy định. Nhờ cải tiến kĩ thuật và tăng giờ làm nên mỗi ngày đội sản xuất được thêm 200 khẩu trang. Vì vậy, không những đã làm vượt mức kế hoạch 800 khẩu trang mà còn hoàn thành công việc sớm hơn 1 ngày so với dự định. Tính số khẩu trang mà đội sản xuất phải làm trong một ngày theo dự định. + Một thùng nước bằng tôn có dạng hình trụ với bán kính đáy là 0,2m và chiều cao 0,4m. Hỏi thùng nước này đựng đầy được bao nhiêu lít nước ? (Bỏ qua bề dày của thùng nước, lấy pi = 3,14 và làm tròn kết quả đến chữ số thập phân thứ hai). + Cho đường tròn O R có hai đường kính AB và CD vuông góc với nhau. Lấy điểm I thuộc đoạn thẳng OB I O B. Gọi E là giao điểm của đường thẳng CI với O E C H là giao điểm của hai đoạn thẳng AE và CD. 1) Chứng minh tứ giác OHEB là tứ giác nội tiếp. 2) Chứng minh AH AE R2 2. 3) Nếu I là trung điểm của đoạn thẳng OB. Tính tỉ số OH OA. 4) Tìm vị trí của I trên đoạn thẳng OB sao cho tích EAEB EC ED đạt giá trị lớn nhất.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chung) năm 2022 - 2023 sở GDĐT Đắk Nông
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chung) năm học 2022 – 2023 sở Giáo dục và Đào tạo Đắk Nông; kỳ thi được diễn ra vào ngày … tháng 06 năm 2022; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chung) năm 2022 – 2023 sở GD&ĐT Đắk Nông : + Giải bài toán sau bằng cách lập phương trình: Thành phố Gia Nghĩa lên kế hoạch xét nghiệm Covid-19 cho 1000 người trong một thời gian quy định. Nhờ cải tiến phương pháp nên mỗi giờ xét nghiệm được thêm 50 người. Vì thế, việc xét nghiệm hoàn thành sớm hơn kế hoạch 1 giờ. Hỏi theo kế hoạch, mỗi giờ thành phố Gia Nghĩa xét nghiệm được bao nhiêu người? + Cho nửa đường tròn đường kính AD. Lấy điểm B thuộc nửa đường tròn (B khác A và D), trên cung BD lấy điểm C (C khác B và D). Hai dây AC và BD cắt nhau tại điểm E. Kẻ đoạn thẳng EF vuông góc với AD (F thuộc AD). a) Chứng minh tứ giác ABEF nội tiếp. b) Chứng minh AE.AC AF.AD c) Chứng minh E là tâm đường tròn nội tiếp tam giác BFC. + Cho 4044 2022 2022 4x 9x 6 P x 2. Tìm giá trị của x để biểu thức P đạt giá trị nhỏ nhất.
Đề tuyển sinh lớp 10 môn Toán (chung) năm 2022 - 2023 sở GDĐT Điện Biên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chung) năm học 2022 – 2023 sở Giáo dục và Đào tạo Điện Biên; kỳ thi được diễn ra vào ngày … tháng 06 năm 2022; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chung) năm 2022 – 2023 sở GD&ĐT Điện Biên : + Theo kế hoạch, một tổ công nhân dự định phải may 120 kiện khẩu trang để phục vụ công tác phòng chống dịch Covid – 19. Nhưng khi thực hiện nhờ cải tiễn kỹ thuật nên mỗi ngày tổ đã làm tăng thêm 5 kiện so với dự định. Do đó tổ đã hoàn thành công việc sớm hơn dự định 2 ngày. Hỏi theo kế hoạch, mỗi ngày tổ phải làm bao nhiêu kiện khẩu trang? + Cho đường tròn (O) và điểm P nằm ngoài (O). Kẻ hai tiếp tuyến PM PN với đường tròn (O) (M N là các tiếp điểm). Một đường thẳng d đi qua P cắt đường tròn (O) tại hai điểm BC (PB PC d không đi qua tâm O). 1. Chứng minh tứ giác PMON nội tiếp. 2. Chứng minh 2 PN PB PC. Tính độ dài đoạn BC khi PB cm PN cm 4 6. 3. Gọi I là trung điểm của BC. Đường thẳng NI cắt đường tròn (O) tại điểm thứ hai T. Chứng minh MT // BC. + Cho tam giác ABC vuông tại A với các đường phân giác trong BM và CN. Chứng minh bất đẳng thức 3 2 2 MC MA NB NA MA NA.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Ninh Thuận
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo Ninh Thuận; kỳ thi được diễn ra vào ngày 01 tháng 07 năm 2022; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Ninh Thuận : + Một lâm trường có hai đội công nhân thực hiện trồng cây phủ xanh đồi trọc. Nếu mỗi công nhân của đội thứ nhất trồng được 30 cây và mỗi công nhân của đội thứ hai trồng được 40 cây thì tổng số cây của cả hai đội trồng là 2880. Tính số công nhân của mỗi đội biết tổng số công nhân của lâm trường là 82. + Cho ABC có ba góc nhọn nội tiếp đường tròn tâm O. Gọi D và E lần lượt là chân đường cao của tam giác ABC hạ từ B và C. 1) Chứng minh tứ giác BEDC là tứ giác nội tiếp. 2) Các đường cao BD và CE cắt đường tròn (O) tại điểm thứ hai lần lượt là I và J. Chứng minh rằng DE song song với IJ. 3) Chứng minh rằng OA vuông góc với DE. + Cho Parabol 2 P y x và đường thẳng d y x m 4. 1. Vẽ Parabol P. 2. Tìm tất cả các giá trị của tham số m để P và d có đúng một điểm chung.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Phú Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo Phú Yên; kỳ thi được diễn ra vào ngày 14 tháng 06 năm 2022; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Phú Yên : + Đường tròn có bao nhiêu trục đối xứng? A. Có vô số trục đối xứng. B. Có duy nhất một trục đối xứng. C. Có hai trục đối xứng. D. Không có trục đối xứng nào. + Tính diện tích phần không tô màu, giới hạn bởi nửa đường tròn đường kính AC nửa đường tròn đường kính AB 8 cm và nửa đường tròn đường kính BC 4cm (hình 3). + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Phú và Yên cùng tham gia cuộc thi ma-ra-tông cự li 10 km. Trong 4 km đầu, cả hai chạy cùng vận tốc. Trong 6 km cuối, Phú tăng vận tốc thêm 2 km/h. Yên vẫn duy trì vận tốc của mình trong suốt quãng đường đua. Kết quả Phú về đích sớm hơn Yên 6 phút. Tính vận tốc chạy của Yên.