Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán thi vào 10 năm 2022 - 2023 phòng GDĐT Ba Đình - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát môn Toán luyện thi tuyển sinh vào lớp 10 năm học 2022 – 2023 phòng Giáo dục và Đào tạo quận Ba Đình, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Sáu ngày 29 tháng 04 năm 2022; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát Toán thi vào 10 năm 2022 – 2023 phòng GD&ĐT Ba Đình – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một đội sản xuất phải làm 10 000 khẩu trang trong một thời gian quy định. Nhờ cải tiến kĩ thuật và tăng giờ làm nên mỗi ngày đội sản xuất được thêm 200 khẩu trang. Vì vậy, không những đã làm vượt mức kế hoạch 800 khẩu trang mà còn hoàn thành công việc sớm hơn 1 ngày so với dự định. Tính số khẩu trang mà đội sản xuất phải làm trong một ngày theo dự định. + Một thùng nước bằng tôn có dạng hình trụ với bán kính đáy là 0,2m và chiều cao 0,4m. Hỏi thùng nước này đựng đầy được bao nhiêu lít nước ? (Bỏ qua bề dày của thùng nước, lấy pi = 3,14 và làm tròn kết quả đến chữ số thập phân thứ hai). + Cho đường tròn O R có hai đường kính AB và CD vuông góc với nhau. Lấy điểm I thuộc đoạn thẳng OB I O B. Gọi E là giao điểm của đường thẳng CI với O E C H là giao điểm của hai đoạn thẳng AE và CD. 1) Chứng minh tứ giác OHEB là tứ giác nội tiếp. 2) Chứng minh AH AE R2 2. 3) Nếu I là trung điểm của đoạn thẳng OB. Tính tỉ số OH OA. 4) Tìm vị trí của I trên đoạn thẳng OB sao cho tích EAEB EC ED đạt giá trị lớn nhất.

Nguồn: toanmath.com

Đọc Sách

Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Bình Định
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Bình Định gồm 6 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Một đám đất hình chữ nhật có chu vi là 24m. Nếu tăng độ dài một cạnh lên 2m và giảm độ dài cạnh còn lại 1m thì diện tích đám đất sẽ tăng thêm 1m2. Tính độ dài các cạnh ban đầu của đám đất. + Cho tam giác ABC (AB <AC) nội tiếp trong đường tròn tâm O. M là điểm nằm trên cung BC không chứa điểm A. Gọi D, E, F lần lượt là hình chiếu của M trên các đường thẳng BC, CA, AB. Chứng minh rằng: [ads] a) Bốn điểm M, D, B, F thuộc một đường tròn và bốn điểm M, D, E, C thuộc một đường tròn b) Ba điểm D,E,F thẳng hàng c) BC/MD = CA/ME + AB/MF
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Vĩnh Long
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Vĩnh Long gồm 6 bài toán tự luận. Trích một số bài toán trong đề: + Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O;R), các đường cao AD, BM, CN cắt nhau tại H. a. Chứng minh rằng AM.AC=AN.AB b. Chứng minh rằng OA vuông góc với MN c. Gọi P là giao điểm của hai đường thẳng MN và BC. Đường thẳng đi qua N và song song với AC cắt AP, AD lần lượt tại I, G. Chứng minh rằng NI=NG
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Hà Nội
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Hà Nội gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Một xe ô tô và một xe máy cùng khởi hành từ A để đi đến B với vận tốc của mỗi xe không đổi trên toàn bộ quãng đường AB dài 120km. Do vận tốc xe ô tô lớn hơn vận tốc xe máy là 10km/h nên xe ô tô đến B sớm hơn xe máy 36 phút. Tính vận tốc của mỗi xe. + Cho đường tròn (O) ngoại tiếp tam giác nhọn ABC. Gọi M và N lần lượt là điểm chính giữa của cung nhỏ AB và cung nhỏ BC. Hai dây AN và CM cắt nhau tại điểm I. Dây MN cắt các cạnh AB và BC lần lượt tại các điểm H và K [ads] 1) Chứng minh bốn điểm C, N, K, I cùng thuộc một đường tròn 2) Chứng minh NB.NK = NM^2 3) Chứng minh tứ giác BHIK là hình thoi 4) Gọi P, Q lần lượt là tâm của các đường tròn ngoại tiếp tam giác MBK, tam giác MCK và E là trung điểm của đoạn PQ. Vẽ đường kính ND của đường tròn (O). Chứng minh ba điểm D, E, K thẳng hàng
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Bắc Ninh
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Bắc Ninh gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho tam giác vuông có số đo các cạnh là các số tự nhiên có hai chữ số. Nếu đổi chỗ hai chữ số của số đo cạnh huyền ta được số đo một cạnh góc vuông. Tính bán kính đường tròn ngoại tiếp tam giác đó. + Cho 2n+1 số nguyên, trong đó có đúng một số 0 và các số 1, 2, 3 … n mỗi số xuất hiện hai lần. Chứng minh rằng với mọi số tự nhiên n ta luôn sắp xếp được 2n+1 số nguyên trên thành một dãy sao cho với mọi m = 1, 2 … n có đúng m số nằm giữa hai số m.